基于深度学习的空间相机在轨点扩展函数估计

Bo Wang;Hongyu Chen;Ying Lu;Jiantao Peng
{"title":"基于深度学习的空间相机在轨点扩展函数估计","authors":"Bo Wang;Hongyu Chen;Ying Lu;Jiantao Peng","doi":"10.1109/LGRS.2025.3562763","DOIUrl":null,"url":null,"abstract":"Obtaining an on-orbit space camera’s point spread function (PSF) is challenging but necessary for remote sensing image (RSI) restoration. Current methods rely on regular ground targets, causing determining the PSF at any position on the camera sensor to involve significant human effort and be highly inefficient. To reduce the difficulty and improve the precision of estimating the PSFs of an on-orbit space camera, this letter proposes DeepPSF, a novel PSF prediction method based on deep learning and Fourier transformation. DeepPSF employs a dual-stream convolutional neural network (CNN) to extract multiscale features from blurred and reference images, introduces a channel-wise Wiener filtering block for PSF feature calculation in frequency domain, and reconstructs high-precision PSF through a CNN network. Experiments demonstrate: 1) on synthetic datasets, DeepPSF achieves PSF prediction with 58.2 dB PSNR (SSIM > 0.64), significantly outperforming Wiener filtering and phase-only image (POI)-based kernel estimation method; 2) when combined with the nonblind deblurring algorithm DWDN, it delivers 26.1 dB restoration PSNR, surpassing comparative methods; and 3) real RSI tests validate its adaptability to complex scenarios. This method provides an efficient solution for full field-of-view PSF modeling of on-orbit cameras.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepPSF: On-Orbit Point Spread Function Estimation of Space Camera With Deep Learning\",\"authors\":\"Bo Wang;Hongyu Chen;Ying Lu;Jiantao Peng\",\"doi\":\"10.1109/LGRS.2025.3562763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obtaining an on-orbit space camera’s point spread function (PSF) is challenging but necessary for remote sensing image (RSI) restoration. Current methods rely on regular ground targets, causing determining the PSF at any position on the camera sensor to involve significant human effort and be highly inefficient. To reduce the difficulty and improve the precision of estimating the PSFs of an on-orbit space camera, this letter proposes DeepPSF, a novel PSF prediction method based on deep learning and Fourier transformation. DeepPSF employs a dual-stream convolutional neural network (CNN) to extract multiscale features from blurred and reference images, introduces a channel-wise Wiener filtering block for PSF feature calculation in frequency domain, and reconstructs high-precision PSF through a CNN network. Experiments demonstrate: 1) on synthetic datasets, DeepPSF achieves PSF prediction with 58.2 dB PSNR (SSIM > 0.64), significantly outperforming Wiener filtering and phase-only image (POI)-based kernel estimation method; 2) when combined with the nonblind deblurring algorithm DWDN, it delivers 26.1 dB restoration PSNR, surpassing comparative methods; and 3) real RSI tests validate its adaptability to complex scenarios. This method provides an efficient solution for full field-of-view PSF modeling of on-orbit cameras.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10971376/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10971376/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在轨空间相机点扩展函数的获取是遥感图像恢复的一个难点和必要条件。目前的方法依赖于常规的地面目标,导致在相机传感器上确定任何位置的PSF需要大量的人力,而且效率非常低。为了降低在轨空间相机PSF估计的难度和提高估计精度,本文提出了一种基于深度学习和傅立叶变换的PSF预测方法DeepPSF。DeepPSF采用双流卷积神经网络(CNN)从模糊图像和参考图像中提取多尺度特征,在频域引入逐通道维纳滤波块进行PSF特征计算,并通过CNN网络重构高精度PSF。实验表明:1)在合成数据集上,DeepPSF实现了58.2 dB的PSF预测,显著优于Wiener滤波和基于相位图像(POI)的核估计方法;2)结合非盲去模糊算法DWDN,恢复PSNR为26.1 dB,优于其他方法;3)实际RSI测试验证了其对复杂场景的适应性。该方法为在轨相机全视场PSF建模提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepPSF: On-Orbit Point Spread Function Estimation of Space Camera With Deep Learning
Obtaining an on-orbit space camera’s point spread function (PSF) is challenging but necessary for remote sensing image (RSI) restoration. Current methods rely on regular ground targets, causing determining the PSF at any position on the camera sensor to involve significant human effort and be highly inefficient. To reduce the difficulty and improve the precision of estimating the PSFs of an on-orbit space camera, this letter proposes DeepPSF, a novel PSF prediction method based on deep learning and Fourier transformation. DeepPSF employs a dual-stream convolutional neural network (CNN) to extract multiscale features from blurred and reference images, introduces a channel-wise Wiener filtering block for PSF feature calculation in frequency domain, and reconstructs high-precision PSF through a CNN network. Experiments demonstrate: 1) on synthetic datasets, DeepPSF achieves PSF prediction with 58.2 dB PSNR (SSIM > 0.64), significantly outperforming Wiener filtering and phase-only image (POI)-based kernel estimation method; 2) when combined with the nonblind deblurring algorithm DWDN, it delivers 26.1 dB restoration PSNR, surpassing comparative methods; and 3) real RSI tests validate its adaptability to complex scenarios. This method provides an efficient solution for full field-of-view PSF modeling of on-orbit cameras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信