Jiayi Li , Huaijin Zheng , Xiang Zhang , Boju Pan , Junliang Lu , Liangrui Zhou , Taiping Zhang , Menghua Dai , Junchao Guo , Weibin Wang , Xianlin Han , Qiang Xu , Yuze Hua , Jorg Kleeff , Huanwen Wu , Zhiyong Liang , Qiaofei Liu , Quan Liao
{"title":"分子图谱显示胰腺实性假乳头状肿瘤的恶性潜能","authors":"Jiayi Li , Huaijin Zheng , Xiang Zhang , Boju Pan , Junliang Lu , Liangrui Zhou , Taiping Zhang , Menghua Dai , Junchao Guo , Weibin Wang , Xianlin Han , Qiang Xu , Yuze Hua , Jorg Kleeff , Huanwen Wu , Zhiyong Liang , Qiaofei Liu , Quan Liao","doi":"10.1016/j.canlet.2025.217788","DOIUrl":null,"url":null,"abstract":"<div><div>Solid pseudopapillary neoplasm of the pancreas (SPN) is a rare tumor primarily affecting middle-aged women, typically characterized by indolent behavior but occasionally demonstrating malignant potential through invasive growth and metastasis. To elucidate the molecular mechanisms driving this heterogeneity, a multi-omics approach was applied to analyze paired metastatic lesions, primary tumors, and normal pancreatic tissues. Methylation profiling via the Illumina Infinium Methylation EPIC BeadChip identified 2425 differentially methylated positions (DMPs) in metastatic versus primary lesions, with 798 DMPs conserved across both lesion types. Tyrosine kinases and cGMP-PKG signaling pathway were the most significantly enriched KEGG pathways involved in the DMPs. Transcriptomic analysis of invasive and non-invasive SPNs using NanoString revealed 99 differentially expressed genes (DEGs). Immunohistochemical validation confirmed elevated protein expression of LY96, IFI16, and GLUD1 in invasive cases. Circulating free DNA (cfDNA) sequencing did not detect genetic mutation in non-metastatic SPN, in contrast, 42.9 % positivity of genetic mutations were detected in metastatic SPNs. Tumor microenvironment analysis by using the GEO database, 850 K methylation sequencing, NanoString transcriptome, highlighted enriched immune-suppressive stromal components in aggressive tumors. These findings establish a molecular signature linking methylation dysregulation, transcriptomic alterations, liquid biopsy, and immune evasion to SPN progression, offering potential biomarkers for risk stratification and therapeutic targeting.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"625 ","pages":"Article 217788"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular profiling reveals the malignant potential in solid pseudopapillary neoplasms of the pancreas\",\"authors\":\"Jiayi Li , Huaijin Zheng , Xiang Zhang , Boju Pan , Junliang Lu , Liangrui Zhou , Taiping Zhang , Menghua Dai , Junchao Guo , Weibin Wang , Xianlin Han , Qiang Xu , Yuze Hua , Jorg Kleeff , Huanwen Wu , Zhiyong Liang , Qiaofei Liu , Quan Liao\",\"doi\":\"10.1016/j.canlet.2025.217788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solid pseudopapillary neoplasm of the pancreas (SPN) is a rare tumor primarily affecting middle-aged women, typically characterized by indolent behavior but occasionally demonstrating malignant potential through invasive growth and metastasis. To elucidate the molecular mechanisms driving this heterogeneity, a multi-omics approach was applied to analyze paired metastatic lesions, primary tumors, and normal pancreatic tissues. Methylation profiling via the Illumina Infinium Methylation EPIC BeadChip identified 2425 differentially methylated positions (DMPs) in metastatic versus primary lesions, with 798 DMPs conserved across both lesion types. Tyrosine kinases and cGMP-PKG signaling pathway were the most significantly enriched KEGG pathways involved in the DMPs. Transcriptomic analysis of invasive and non-invasive SPNs using NanoString revealed 99 differentially expressed genes (DEGs). Immunohistochemical validation confirmed elevated protein expression of LY96, IFI16, and GLUD1 in invasive cases. Circulating free DNA (cfDNA) sequencing did not detect genetic mutation in non-metastatic SPN, in contrast, 42.9 % positivity of genetic mutations were detected in metastatic SPNs. Tumor microenvironment analysis by using the GEO database, 850 K methylation sequencing, NanoString transcriptome, highlighted enriched immune-suppressive stromal components in aggressive tumors. These findings establish a molecular signature linking methylation dysregulation, transcriptomic alterations, liquid biopsy, and immune evasion to SPN progression, offering potential biomarkers for risk stratification and therapeutic targeting.</div></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\"625 \",\"pages\":\"Article 217788\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383525003556\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525003556","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Molecular profiling reveals the malignant potential in solid pseudopapillary neoplasms of the pancreas
Solid pseudopapillary neoplasm of the pancreas (SPN) is a rare tumor primarily affecting middle-aged women, typically characterized by indolent behavior but occasionally demonstrating malignant potential through invasive growth and metastasis. To elucidate the molecular mechanisms driving this heterogeneity, a multi-omics approach was applied to analyze paired metastatic lesions, primary tumors, and normal pancreatic tissues. Methylation profiling via the Illumina Infinium Methylation EPIC BeadChip identified 2425 differentially methylated positions (DMPs) in metastatic versus primary lesions, with 798 DMPs conserved across both lesion types. Tyrosine kinases and cGMP-PKG signaling pathway were the most significantly enriched KEGG pathways involved in the DMPs. Transcriptomic analysis of invasive and non-invasive SPNs using NanoString revealed 99 differentially expressed genes (DEGs). Immunohistochemical validation confirmed elevated protein expression of LY96, IFI16, and GLUD1 in invasive cases. Circulating free DNA (cfDNA) sequencing did not detect genetic mutation in non-metastatic SPN, in contrast, 42.9 % positivity of genetic mutations were detected in metastatic SPNs. Tumor microenvironment analysis by using the GEO database, 850 K methylation sequencing, NanoString transcriptome, highlighted enriched immune-suppressive stromal components in aggressive tumors. These findings establish a molecular signature linking methylation dysregulation, transcriptomic alterations, liquid biopsy, and immune evasion to SPN progression, offering potential biomarkers for risk stratification and therapeutic targeting.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.