{"title":"用于先进光电子学的端氢/卤素锗纳米带的各向异性和可调特性","authors":"K. Gherbi , M.T. Kadri , H. Belkhir , K. Zanat","doi":"10.1016/j.physo.2025.100280","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the structural, electronic, and optical characteristics of X-terminated germanene nanoribbons (GeNRs) featuring armchair (7-AGeNR) and zigzag (5-ZGeNR) arrangements through first-principles calculations. The findings illustrate how halogen edge functionalization (H, F, Cl, Br, I) significantly modifies the geometric, electronic, and optical traits of GeNRs. Specifically, the Ge-Ge bond length (2.44 Å) and the buckling height (0.69 Å) of the 7-AGeNRs are affected by the size of the X-terminated atoms, with larger halogens leading to increased bond lengths and changes in electronic properties. The analysis of the electronic band structure indicates that halogen passivation introduces a bandgap in the nanoribbons, with 7-AGeNRs-F displaying the largest bandgap of 0.60 eV, as opposed to 0.37 eV for 7-AGeNRs-I. We provide new insights into the tunable anisotropy of the dielectric constant and distinct optical transitions induced by halogen edge functionalization. The optical properties exhibit notable anisotropy, with 7-AGeNR-H showing a dielectric constant of <span><math><mrow><msubsup><mi>ε</mi><mn>1</mn><mrow><mi>x</mi><mi>x</mi></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>12.984</mn></mrow></math></span> and <span><math><mrow><msubsup><mi>ε</mi><mn>1</mn><mrow><mi>y</mi><mi>y</mi></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>4.127</mn></mrow></math></span>, while I-termination leads to reduced values of 7.762 and 5.031, respectively. Furthermore, a redshift in absorption is observed for 7-AGeNRs with heavier halogens, while 5-ZGeNRs demonstrate a blueshift. Reflectivity and plasma frequency analyses point to an optical anisotropy, where H-terminated 7-AGeNR shows a high reflectivity of <span><math><mrow><msup><mi>R</mi><mrow><mi>x</mi><mi>x</mi></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0.320</mn></mrow></math></span>, which diminishes with heavier halogens. These adjustable properties indicate the potential application of GeNRs in optoelectronic devices, including infrared (IR) detectors, ultraviolet (UV) sensors, and photovoltaic systems.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"24 ","pages":"Article 100280"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic and tunable properties of hydrogen/halogen-terminated germanene nanoribbons for advanced optoelectronics\",\"authors\":\"K. Gherbi , M.T. Kadri , H. Belkhir , K. Zanat\",\"doi\":\"10.1016/j.physo.2025.100280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the structural, electronic, and optical characteristics of X-terminated germanene nanoribbons (GeNRs) featuring armchair (7-AGeNR) and zigzag (5-ZGeNR) arrangements through first-principles calculations. The findings illustrate how halogen edge functionalization (H, F, Cl, Br, I) significantly modifies the geometric, electronic, and optical traits of GeNRs. Specifically, the Ge-Ge bond length (2.44 Å) and the buckling height (0.69 Å) of the 7-AGeNRs are affected by the size of the X-terminated atoms, with larger halogens leading to increased bond lengths and changes in electronic properties. The analysis of the electronic band structure indicates that halogen passivation introduces a bandgap in the nanoribbons, with 7-AGeNRs-F displaying the largest bandgap of 0.60 eV, as opposed to 0.37 eV for 7-AGeNRs-I. We provide new insights into the tunable anisotropy of the dielectric constant and distinct optical transitions induced by halogen edge functionalization. The optical properties exhibit notable anisotropy, with 7-AGeNR-H showing a dielectric constant of <span><math><mrow><msubsup><mi>ε</mi><mn>1</mn><mrow><mi>x</mi><mi>x</mi></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>12.984</mn></mrow></math></span> and <span><math><mrow><msubsup><mi>ε</mi><mn>1</mn><mrow><mi>y</mi><mi>y</mi></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>4.127</mn></mrow></math></span>, while I-termination leads to reduced values of 7.762 and 5.031, respectively. Furthermore, a redshift in absorption is observed for 7-AGeNRs with heavier halogens, while 5-ZGeNRs demonstrate a blueshift. Reflectivity and plasma frequency analyses point to an optical anisotropy, where H-terminated 7-AGeNR shows a high reflectivity of <span><math><mrow><msup><mi>R</mi><mrow><mi>x</mi><mi>x</mi></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0.320</mn></mrow></math></span>, which diminishes with heavier halogens. These adjustable properties indicate the potential application of GeNRs in optoelectronic devices, including infrared (IR) detectors, ultraviolet (UV) sensors, and photovoltaic systems.</div></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"24 \",\"pages\":\"Article 100280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032625000304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032625000304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Anisotropic and tunable properties of hydrogen/halogen-terminated germanene nanoribbons for advanced optoelectronics
This study explores the structural, electronic, and optical characteristics of X-terminated germanene nanoribbons (GeNRs) featuring armchair (7-AGeNR) and zigzag (5-ZGeNR) arrangements through first-principles calculations. The findings illustrate how halogen edge functionalization (H, F, Cl, Br, I) significantly modifies the geometric, electronic, and optical traits of GeNRs. Specifically, the Ge-Ge bond length (2.44 Å) and the buckling height (0.69 Å) of the 7-AGeNRs are affected by the size of the X-terminated atoms, with larger halogens leading to increased bond lengths and changes in electronic properties. The analysis of the electronic band structure indicates that halogen passivation introduces a bandgap in the nanoribbons, with 7-AGeNRs-F displaying the largest bandgap of 0.60 eV, as opposed to 0.37 eV for 7-AGeNRs-I. We provide new insights into the tunable anisotropy of the dielectric constant and distinct optical transitions induced by halogen edge functionalization. The optical properties exhibit notable anisotropy, with 7-AGeNR-H showing a dielectric constant of and , while I-termination leads to reduced values of 7.762 and 5.031, respectively. Furthermore, a redshift in absorption is observed for 7-AGeNRs with heavier halogens, while 5-ZGeNRs demonstrate a blueshift. Reflectivity and plasma frequency analyses point to an optical anisotropy, where H-terminated 7-AGeNR shows a high reflectivity of , which diminishes with heavier halogens. These adjustable properties indicate the potential application of GeNRs in optoelectronic devices, including infrared (IR) detectors, ultraviolet (UV) sensors, and photovoltaic systems.