基于iom的远程病人监护系统的不平衡数据分类器模型

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-05-12 DOI:10.1016/j.mex.2025.103362
Sayyed Johar , G.R. Manjula
{"title":"基于iom的远程病人监护系统的不平衡数据分类器模型","authors":"Sayyed Johar ,&nbsp;G.R. Manjula","doi":"10.1016/j.mex.2025.103362","DOIUrl":null,"url":null,"abstract":"<div><div>Remote patient monitoring systems (RPMS) using the Internet of Medical Things (IoMT) continuously collect and exchange periodic sensor-observations through communication modules. However, these data streams often contain relevant and irrelevant series, leading to imbalance issues in physiological disease assessment. This research introduces a PhysioDimClassifier (PDC), a novel model to detect and mitigate imbalanced data in physiological disease diagnosis. The proposed model identifies the likenesses and permanence within observation sequences, classifying them as normal or imbalanced based on monitoring duration and sensor communication time. A rotational tree classifier trackspermanence sequences, ensuring accurate classification of imbalanced data. By analyzingsequence interruptions, the model improves the retention of imbalanced data patterns, reducing misclassification. Experimental validation demonstrates that PDCM enhances data accuracy by up to 12.61 %, improves imbalance data detection by 13.23 %, increases classification rate by 10.98 %, lowers data imbalance by 11.22 %, and decreases assessment time by 10.5 %. These improvements contribute to timely and accurate physiological disease diagnosis in IoMT-based RPMS, optimizing clinical decision-making and patient outcomes. The proposed approach providesa robust, scalable, and efficient solution for handling imbalanced physiological data in real-time healthcare applications.<ul><li><span>•</span><span><div>Introduces PhysioDimClassifier (PDC), a novel model to detect and mitigate imbalanced physiological data.</div></span></li><li><span>•</span><span><div>Employing a rotational tree classifier for sequence performance tracking and imbalance classification.</div></span></li><li><span>•</span><span><div>Enhances classification accuracy and reduces imbalance effects, ensuring improved disease diagnosis in IoMT-based RPMS.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103362"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PhysioDimClassifier—imbalance data classifier model for IoMT-based remote patient monitoring systems\",\"authors\":\"Sayyed Johar ,&nbsp;G.R. Manjula\",\"doi\":\"10.1016/j.mex.2025.103362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Remote patient monitoring systems (RPMS) using the Internet of Medical Things (IoMT) continuously collect and exchange periodic sensor-observations through communication modules. However, these data streams often contain relevant and irrelevant series, leading to imbalance issues in physiological disease assessment. This research introduces a PhysioDimClassifier (PDC), a novel model to detect and mitigate imbalanced data in physiological disease diagnosis. The proposed model identifies the likenesses and permanence within observation sequences, classifying them as normal or imbalanced based on monitoring duration and sensor communication time. A rotational tree classifier trackspermanence sequences, ensuring accurate classification of imbalanced data. By analyzingsequence interruptions, the model improves the retention of imbalanced data patterns, reducing misclassification. Experimental validation demonstrates that PDCM enhances data accuracy by up to 12.61 %, improves imbalance data detection by 13.23 %, increases classification rate by 10.98 %, lowers data imbalance by 11.22 %, and decreases assessment time by 10.5 %. These improvements contribute to timely and accurate physiological disease diagnosis in IoMT-based RPMS, optimizing clinical decision-making and patient outcomes. The proposed approach providesa robust, scalable, and efficient solution for handling imbalanced physiological data in real-time healthcare applications.<ul><li><span>•</span><span><div>Introduces PhysioDimClassifier (PDC), a novel model to detect and mitigate imbalanced physiological data.</div></span></li><li><span>•</span><span><div>Employing a rotational tree classifier for sequence performance tracking and imbalance classification.</div></span></li><li><span>•</span><span><div>Enhances classification accuracy and reduces imbalance effects, ensuring improved disease diagnosis in IoMT-based RPMS.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"14 \",\"pages\":\"Article 103362\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125002080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125002080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

使用医疗物联网(IoMT)的远程患者监测系统(RPMS)通过通信模块持续收集和交换周期性传感器观察结果。然而,这些数据流往往包含相关和不相关的序列,导致生理疾病评估中的不平衡问题。提出了一种新的生理疾病诊断数据不平衡检测和缓解模型——物理模糊分类器(PDC)。该模型识别了观测序列的相似性和持久性,并根据监测持续时间和传感器通信时间将其分类为正常或不平衡。旋转树分类器跟踪持久性序列,确保不平衡数据的准确分类。通过分析序列中断,该模型提高了不平衡数据模式的保留,减少了误分类。实验验证表明,PDCM的数据准确率提高了12.61%,不平衡数据检测率提高了13.23%,分类率提高了10.98%,不平衡数据降低了11.22%,评估时间减少了10.5%。这些改进有助于在基于iom的RPMS中及时准确地诊断生理疾病,优化临床决策和患者预后。该方法为实时医疗保健应用中的不平衡生理数据处理提供了一种鲁棒、可扩展和高效的解决方案。•介绍了PhysioDimClassifier (PDC),这是一种检测和减轻不平衡生理数据的新模型。•采用旋转树分类器进行序列性能跟踪和不平衡分类。•提高分类准确性,减少不平衡效应,确保改进基于iomt的RPMS的疾病诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PhysioDimClassifier—imbalance data classifier model for IoMT-based remote patient monitoring systems
Remote patient monitoring systems (RPMS) using the Internet of Medical Things (IoMT) continuously collect and exchange periodic sensor-observations through communication modules. However, these data streams often contain relevant and irrelevant series, leading to imbalance issues in physiological disease assessment. This research introduces a PhysioDimClassifier (PDC), a novel model to detect and mitigate imbalanced data in physiological disease diagnosis. The proposed model identifies the likenesses and permanence within observation sequences, classifying them as normal or imbalanced based on monitoring duration and sensor communication time. A rotational tree classifier trackspermanence sequences, ensuring accurate classification of imbalanced data. By analyzingsequence interruptions, the model improves the retention of imbalanced data patterns, reducing misclassification. Experimental validation demonstrates that PDCM enhances data accuracy by up to 12.61 %, improves imbalance data detection by 13.23 %, increases classification rate by 10.98 %, lowers data imbalance by 11.22 %, and decreases assessment time by 10.5 %. These improvements contribute to timely and accurate physiological disease diagnosis in IoMT-based RPMS, optimizing clinical decision-making and patient outcomes. The proposed approach providesa robust, scalable, and efficient solution for handling imbalanced physiological data in real-time healthcare applications.
  • Introduces PhysioDimClassifier (PDC), a novel model to detect and mitigate imbalanced physiological data.
  • Employing a rotational tree classifier for sequence performance tracking and imbalance classification.
  • Enhances classification accuracy and reduces imbalance effects, ensuring improved disease diagnosis in IoMT-based RPMS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信