Peijun Han , Wei Ye , Hongwei Ma , Yangchao Dong , Xin Lv , He Liu , Linfeng Cheng , Liang Zhang , Sumin Li , Yingfeng Lei , Fanglin Zhang
{"title":"DDX17通过与病毒dsRNA和G3BP1相互作用促进DENV-2复制","authors":"Peijun Han , Wei Ye , Hongwei Ma , Yangchao Dong , Xin Lv , He Liu , Linfeng Cheng , Liang Zhang , Sumin Li , Yingfeng Lei , Fanglin Zhang","doi":"10.1016/j.ijmm.2025.151654","DOIUrl":null,"url":null,"abstract":"<div><div>Dengue virus (DENV) is one of the major arboviruses that pose a serious threat to global human health. However, there is currently no specific antiviral drug available for the treatment of DENV infection. DDX17, a member of the DExD/H-box helicase family, has been implicated in the replication processes of various viruses. Our research group discovered that during the early stages of dengue virus replication, DDX17 promotes viral replication and suppresses the activity of the IFN promoter. Furthermore, DDX17 binds to viral dsRNA and interacts with G3BP1, a component of stress granules (SGs), to inhibit SG formation, thereby enhancing viral replication. By elucidating the role of DDX17 in the early stages of dengue virus replication, our findings provide valuable insights into host-pathogen interactions during DENV infection, offering potential therapeutic perspectives.</div></div>","PeriodicalId":50312,"journal":{"name":"International Journal of Medical Microbiology","volume":"319 ","pages":"Article 151654"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDX17 promotes DENV-2 replication via interaction with viral dsRNA and G3BP1\",\"authors\":\"Peijun Han , Wei Ye , Hongwei Ma , Yangchao Dong , Xin Lv , He Liu , Linfeng Cheng , Liang Zhang , Sumin Li , Yingfeng Lei , Fanglin Zhang\",\"doi\":\"10.1016/j.ijmm.2025.151654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dengue virus (DENV) is one of the major arboviruses that pose a serious threat to global human health. However, there is currently no specific antiviral drug available for the treatment of DENV infection. DDX17, a member of the DExD/H-box helicase family, has been implicated in the replication processes of various viruses. Our research group discovered that during the early stages of dengue virus replication, DDX17 promotes viral replication and suppresses the activity of the IFN promoter. Furthermore, DDX17 binds to viral dsRNA and interacts with G3BP1, a component of stress granules (SGs), to inhibit SG formation, thereby enhancing viral replication. By elucidating the role of DDX17 in the early stages of dengue virus replication, our findings provide valuable insights into host-pathogen interactions during DENV infection, offering potential therapeutic perspectives.</div></div>\",\"PeriodicalId\":50312,\"journal\":{\"name\":\"International Journal of Medical Microbiology\",\"volume\":\"319 \",\"pages\":\"Article 151654\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1438422125000104\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1438422125000104","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
DDX17 promotes DENV-2 replication via interaction with viral dsRNA and G3BP1
Dengue virus (DENV) is one of the major arboviruses that pose a serious threat to global human health. However, there is currently no specific antiviral drug available for the treatment of DENV infection. DDX17, a member of the DExD/H-box helicase family, has been implicated in the replication processes of various viruses. Our research group discovered that during the early stages of dengue virus replication, DDX17 promotes viral replication and suppresses the activity of the IFN promoter. Furthermore, DDX17 binds to viral dsRNA and interacts with G3BP1, a component of stress granules (SGs), to inhibit SG formation, thereby enhancing viral replication. By elucidating the role of DDX17 in the early stages of dengue virus replication, our findings provide valuable insights into host-pathogen interactions during DENV infection, offering potential therapeutic perspectives.
期刊介绍:
Pathogen genome sequencing projects have provided a wealth of data that need to be set in context to pathogenicity and the outcome of infections. In addition, the interplay between a pathogen and its host cell has become increasingly important to understand and interfere with diseases caused by microbial pathogens. IJMM meets these needs by focussing on genome and proteome analyses, studies dealing with the molecular mechanisms of pathogenicity and the evolution of pathogenic agents, the interactions between pathogens and host cells ("cellular microbiology"), and molecular epidemiology. To help the reader keeping up with the rapidly evolving new findings in the field of medical microbiology, IJMM publishes original articles, case studies and topical, state-of-the-art mini-reviews in a well balanced fashion. All articles are strictly peer-reviewed. Important topics are reinforced by 2 special issues per year dedicated to a particular theme. Finally, at irregular intervals, current opinions on recent or future developments in medical microbiology are presented in an editorial section.