周期框架的可实现维度

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Ryoshun Oba, Shin-ichi Tanigawa
{"title":"周期框架的可实现维度","authors":"Ryoshun Oba,&nbsp;Shin-ichi Tanigawa","doi":"10.1016/j.comgeo.2025.102200","DOIUrl":null,"url":null,"abstract":"<div><div>Belk and Connelly introduced the realizable dimension <span><math><mi>rd</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a finite graph <em>G</em>, which is the minimum nonnegative integer <em>d</em> such that every framework <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> in any dimension admits a framework in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with the same edge lengths. They characterized finite graphs with realizable dimension at most 1, 2, or 3 in terms of forbidden minors. In this paper, we consider periodic frameworks and extend the notion to <span><math><mi>Z</mi></math></span>-symmetric graphs. We give a forbidden minor characterization of <span><math><mi>Z</mi></math></span>-symmetric graphs with realizable dimension at most 1 or 2, and show that the characterization can be checked in linear time when a graph is given as a quotient <span><math><mi>Z</mi></math></span>-labeled graph.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"130 ","pages":"Article 102200"},"PeriodicalIF":0.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizable dimension of periodic frameworks\",\"authors\":\"Ryoshun Oba,&nbsp;Shin-ichi Tanigawa\",\"doi\":\"10.1016/j.comgeo.2025.102200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Belk and Connelly introduced the realizable dimension <span><math><mi>rd</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a finite graph <em>G</em>, which is the minimum nonnegative integer <em>d</em> such that every framework <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> in any dimension admits a framework in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with the same edge lengths. They characterized finite graphs with realizable dimension at most 1, 2, or 3 in terms of forbidden minors. In this paper, we consider periodic frameworks and extend the notion to <span><math><mi>Z</mi></math></span>-symmetric graphs. We give a forbidden minor characterization of <span><math><mi>Z</mi></math></span>-symmetric graphs with realizable dimension at most 1 or 2, and show that the characterization can be checked in linear time when a graph is given as a quotient <span><math><mi>Z</mi></math></span>-labeled graph.</div></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":\"130 \",\"pages\":\"Article 102200\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772125000380\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000380","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Belk和Connelly引入了有限图G的可实现维数rd(G),它是最小非负整数d,使得任意维上的每一个框架(G,p)在rd中都有一个具有相同边长的框架。他们用禁忌次元描述了可实现维数最多为1、2或3的有限图。本文考虑周期框架,并将其推广到z对称图。我们给出了可实现维数最多为1或2的z对称图的一个禁忌小特征,并证明了当图被给定为商z标记图时,该特征可以在线性时间内得到检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizable dimension of periodic frameworks
Belk and Connelly introduced the realizable dimension rd(G) of a finite graph G, which is the minimum nonnegative integer d such that every framework (G,p) in any dimension admits a framework in Rd with the same edge lengths. They characterized finite graphs with realizable dimension at most 1, 2, or 3 in terms of forbidden minors. In this paper, we consider periodic frameworks and extend the notion to Z-symmetric graphs. We give a forbidden minor characterization of Z-symmetric graphs with realizable dimension at most 1 or 2, and show that the characterization can be checked in linear time when a graph is given as a quotient Z-labeled graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信