非线性筛子对时间序列非参数条件矩约束的推断

IF 9.9 3区 经济学 Q1 ECONOMICS
Xiaohong Chen , Yuan Liao , Weichen Wang
{"title":"非线性筛子对时间序列非参数条件矩约束的推断","authors":"Xiaohong Chen ,&nbsp;Yuan Liao ,&nbsp;Weichen Wang","doi":"10.1016/j.jeconom.2024.105920","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies estimation of and inference on dynamic nonparametric conditional moment restrictions of high dimensional variables for weakly dependent data, where the unknown functions of endogenous variables can be approximated via nonlinear sieves such as neural networks and Gaussian radial bases. The true unknown functions and their sieve approximations are allowed to be in general weighted function spaces with unbounded supports, which is important for time series data. Under some regularity conditions, the optimally weighted general nonlinear sieve quasi-likelihood ratio (GN-QLR) statistic for the expectation functional of unknown function is asymptotically Chi-square distributed regardless whether the functional could be estimated at a root-<span><math><mi>n</mi></math></span> rate or not, and the estimated expectation functional is asymptotically efficient if it is root-<span><math><mi>n</mi></math></span> estimable. Our general theories are applied to two important examples: (1) estimating the value function and the off-policy evaluation in reinforcement learning (RL); and (2) estimating the averaged partial mean and averaged partial derivative of dynamic nonparametric quantile instrumental variable (NPQIV) models. We demonstrate the finite sample performance of our optimal inference procedure on averaged partial derivative of a dynamic NPQIV model in simulation studies.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105920"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference on time series nonparametric conditional moment restrictions using nonlinear sieves\",\"authors\":\"Xiaohong Chen ,&nbsp;Yuan Liao ,&nbsp;Weichen Wang\",\"doi\":\"10.1016/j.jeconom.2024.105920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies estimation of and inference on dynamic nonparametric conditional moment restrictions of high dimensional variables for weakly dependent data, where the unknown functions of endogenous variables can be approximated via nonlinear sieves such as neural networks and Gaussian radial bases. The true unknown functions and their sieve approximations are allowed to be in general weighted function spaces with unbounded supports, which is important for time series data. Under some regularity conditions, the optimally weighted general nonlinear sieve quasi-likelihood ratio (GN-QLR) statistic for the expectation functional of unknown function is asymptotically Chi-square distributed regardless whether the functional could be estimated at a root-<span><math><mi>n</mi></math></span> rate or not, and the estimated expectation functional is asymptotically efficient if it is root-<span><math><mi>n</mi></math></span> estimable. Our general theories are applied to two important examples: (1) estimating the value function and the off-policy evaluation in reinforcement learning (RL); and (2) estimating the averaged partial mean and averaged partial derivative of dynamic nonparametric quantile instrumental variable (NPQIV) models. We demonstrate the finite sample performance of our optimal inference procedure on averaged partial derivative of a dynamic NPQIV model in simulation studies.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"249 \",\"pages\":\"Article 105920\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624002719\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002719","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了弱相关数据下高维变量动态非参数条件矩约束的估计与推理,其中内源变量的未知函数可以通过神经网络和高斯径向基等非线性筛子逼近。真正的未知函数和它们的筛近似值允许存在于具有无界支撑的一般加权函数空间中,这对于时间序列数据是很重要的。在一定正则性条件下,未知函数的期望泛函的最优加权一般非线性筛拟似然比(GN-QLR)统计量无论是否能以n根速率估计,都是渐近卡方分布,如果估计的期望泛函是n根可估计的,则是渐近有效的。我们的一般理论应用于两个重要的例子:(1)强化学习(RL)中的价值函数估计和off-policy评估;(2)估计动态非参数分位数工具变量(NPQIV)模型的平均偏均值和平均偏导数。在仿真研究中,我们证明了对动态NPQIV模型的平均偏导数的最优推理过程的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inference on time series nonparametric conditional moment restrictions using nonlinear sieves
This paper studies estimation of and inference on dynamic nonparametric conditional moment restrictions of high dimensional variables for weakly dependent data, where the unknown functions of endogenous variables can be approximated via nonlinear sieves such as neural networks and Gaussian radial bases. The true unknown functions and their sieve approximations are allowed to be in general weighted function spaces with unbounded supports, which is important for time series data. Under some regularity conditions, the optimally weighted general nonlinear sieve quasi-likelihood ratio (GN-QLR) statistic for the expectation functional of unknown function is asymptotically Chi-square distributed regardless whether the functional could be estimated at a root-n rate or not, and the estimated expectation functional is asymptotically efficient if it is root-n estimable. Our general theories are applied to two important examples: (1) estimating the value function and the off-policy evaluation in reinforcement learning (RL); and (2) estimating the averaged partial mean and averaged partial derivative of dynamic nonparametric quantile instrumental variable (NPQIV) models. We demonstrate the finite sample performance of our optimal inference procedure on averaged partial derivative of a dynamic NPQIV model in simulation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信