Zhenkun Hu , Shengyu Pang , Yugan Liao , Yong Tang , Qian Mao , Baolu Shi
{"title":"微米级铝锂合金颗粒在高温气流中的点火燃烧特性","authors":"Zhenkun Hu , Shengyu Pang , Yugan Liao , Yong Tang , Qian Mao , Baolu Shi","doi":"10.1016/j.combustflame.2025.114237","DOIUrl":null,"url":null,"abstract":"<div><div>Compared to pure aluminum particles, Al-Li alloy particles exhibit shorter ignition delay times and smaller combustion product sizes, making them a superior metallic additive for solid propellants. Therefore, this study experimentally and theoretically investigated the ignition and combustion characteristics of micron-sized Al-Li alloy particle. First, the ignition delay times of 8 μm Al-Li alloy particle over a wide range of temperatures were measured using a reflected shock tube. Second, theoretical models of ignition and combustion of micron-sized Al-Li alloy particle in high-temperature gas flow were developed, by considering comprehensive processes including convective heat transfer, radiative heat transfer, heterogeneous surface reactions, phase change, oxide layer rupture, diffusion-controlled combustion and micro-explosion. The ignition delay times and critical ignition temperature predicted by the model show good agreement with the experimental results. Detailed analysis reveals that micro-explosion can occur as the saturation vapor pressure of lithium exceeds the contact pressure at the Al-Li interface during combustion. Parametric studies further indicate that elevating ambient pressure increases the contact pressure at the Al-Li interface, thereby inhibiting micro-explosion. In contrast, raising ambient temperature increases the saturation vapor pressure of lithium, thus facilitating micro-explosion. Finally, an empirical formula was derived to predict the critical ambient pressure at which micro-explosion occurs in Al-Li alloy particle with 5 % lithium content.</div></div><div><h3>Novelty and Significance Statement</h3><div>In this study, both the ignition delay times and the critical ignition temperature of Al-Li alloy particle were measured using a reflected shock tube. Subsequently, theoretical models of ignition and combustion of micron-sized Al-Li alloy particle in high-temperature gas flow were developed, encompassing convective heat transfer, radiative heat transfer, heterogeneous surface reactions, phase change, oxide layer rupture, diffusion-controlled combustion and micro-explosion. Based on the model, the heat and mass transfer mechanism of Al-Li alloy particle during ignition and combustion was revealed, and particularly elucidating the micro-explosion mechanism as well as the effects of ambient pressure and temperature on micro-explosion. Finally, an empirical formula was proposed to predict the critical ambient pressure at which micro-explosion occurs in Al-Li alloy particle.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"277 ","pages":"Article 114237"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ignition and combustion characteristics of micron-sized Al-Li alloy particle in high-temperature gas flow\",\"authors\":\"Zhenkun Hu , Shengyu Pang , Yugan Liao , Yong Tang , Qian Mao , Baolu Shi\",\"doi\":\"10.1016/j.combustflame.2025.114237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Compared to pure aluminum particles, Al-Li alloy particles exhibit shorter ignition delay times and smaller combustion product sizes, making them a superior metallic additive for solid propellants. Therefore, this study experimentally and theoretically investigated the ignition and combustion characteristics of micron-sized Al-Li alloy particle. First, the ignition delay times of 8 μm Al-Li alloy particle over a wide range of temperatures were measured using a reflected shock tube. Second, theoretical models of ignition and combustion of micron-sized Al-Li alloy particle in high-temperature gas flow were developed, by considering comprehensive processes including convective heat transfer, radiative heat transfer, heterogeneous surface reactions, phase change, oxide layer rupture, diffusion-controlled combustion and micro-explosion. The ignition delay times and critical ignition temperature predicted by the model show good agreement with the experimental results. Detailed analysis reveals that micro-explosion can occur as the saturation vapor pressure of lithium exceeds the contact pressure at the Al-Li interface during combustion. Parametric studies further indicate that elevating ambient pressure increases the contact pressure at the Al-Li interface, thereby inhibiting micro-explosion. In contrast, raising ambient temperature increases the saturation vapor pressure of lithium, thus facilitating micro-explosion. Finally, an empirical formula was derived to predict the critical ambient pressure at which micro-explosion occurs in Al-Li alloy particle with 5 % lithium content.</div></div><div><h3>Novelty and Significance Statement</h3><div>In this study, both the ignition delay times and the critical ignition temperature of Al-Li alloy particle were measured using a reflected shock tube. Subsequently, theoretical models of ignition and combustion of micron-sized Al-Li alloy particle in high-temperature gas flow were developed, encompassing convective heat transfer, radiative heat transfer, heterogeneous surface reactions, phase change, oxide layer rupture, diffusion-controlled combustion and micro-explosion. Based on the model, the heat and mass transfer mechanism of Al-Li alloy particle during ignition and combustion was revealed, and particularly elucidating the micro-explosion mechanism as well as the effects of ambient pressure and temperature on micro-explosion. Finally, an empirical formula was proposed to predict the critical ambient pressure at which micro-explosion occurs in Al-Li alloy particle.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"277 \",\"pages\":\"Article 114237\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218025002755\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218025002755","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Ignition and combustion characteristics of micron-sized Al-Li alloy particle in high-temperature gas flow
Compared to pure aluminum particles, Al-Li alloy particles exhibit shorter ignition delay times and smaller combustion product sizes, making them a superior metallic additive for solid propellants. Therefore, this study experimentally and theoretically investigated the ignition and combustion characteristics of micron-sized Al-Li alloy particle. First, the ignition delay times of 8 μm Al-Li alloy particle over a wide range of temperatures were measured using a reflected shock tube. Second, theoretical models of ignition and combustion of micron-sized Al-Li alloy particle in high-temperature gas flow were developed, by considering comprehensive processes including convective heat transfer, radiative heat transfer, heterogeneous surface reactions, phase change, oxide layer rupture, diffusion-controlled combustion and micro-explosion. The ignition delay times and critical ignition temperature predicted by the model show good agreement with the experimental results. Detailed analysis reveals that micro-explosion can occur as the saturation vapor pressure of lithium exceeds the contact pressure at the Al-Li interface during combustion. Parametric studies further indicate that elevating ambient pressure increases the contact pressure at the Al-Li interface, thereby inhibiting micro-explosion. In contrast, raising ambient temperature increases the saturation vapor pressure of lithium, thus facilitating micro-explosion. Finally, an empirical formula was derived to predict the critical ambient pressure at which micro-explosion occurs in Al-Li alloy particle with 5 % lithium content.
Novelty and Significance Statement
In this study, both the ignition delay times and the critical ignition temperature of Al-Li alloy particle were measured using a reflected shock tube. Subsequently, theoretical models of ignition and combustion of micron-sized Al-Li alloy particle in high-temperature gas flow were developed, encompassing convective heat transfer, radiative heat transfer, heterogeneous surface reactions, phase change, oxide layer rupture, diffusion-controlled combustion and micro-explosion. Based on the model, the heat and mass transfer mechanism of Al-Li alloy particle during ignition and combustion was revealed, and particularly elucidating the micro-explosion mechanism as well as the effects of ambient pressure and temperature on micro-explosion. Finally, an empirical formula was proposed to predict the critical ambient pressure at which micro-explosion occurs in Al-Li alloy particle.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.