Kun-Jie Bian , Xiaoze Bao , Xiao-Dong Li , Damien Bonne , Li-Wei Zou
{"title":"脯氨酸内肽酶配体及其对蛋白-蛋白相互作用影响的研究进展","authors":"Kun-Jie Bian , Xiaoze Bao , Xiao-Dong Li , Damien Bonne , Li-Wei Zou","doi":"10.1016/j.cbi.2025.111557","DOIUrl":null,"url":null,"abstract":"<div><div>Proline endopeptidase (PREP), as a serine protease, plays a crucial role in human physiology and pathology, and is intricately linked to the genesis and progression of a spectrum of illnesses. The fluorescent substrates currently used for PREP lack ideal specificity and are unable to specifically detect PREP activity under physiological conditions. This limitation, to some extent, hinders the in-depth investigation of its physiological and pathophysiological functions. Beyond its enzymatic capabilities, PREP's physiological functions extend to the modulation of protein-protein interactions (PPIs), a dimension whose significance is only beginning to be recognized, and investigations into how PREP inhibitors might influence these PPIs remain sparse. Therefore, based on the outline of the distribution and structural characteristics of PREP, this review systematically summarized the structure-activity relationship (SAR) of PREP ligands concerning their potency and specificity, the associated recognition mechanisms, as well as the regulatory impact of PREP ligands on PPIs. Finally, the obstacles and future prospects of PREP ligands were emphasized, in order to provide suggestions and help for the design and development of PREP specific substrates and inhibitors.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"416 ","pages":"Article 111557"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress of proline endopeptidase ligands and their effects on protein-protein interactions\",\"authors\":\"Kun-Jie Bian , Xiaoze Bao , Xiao-Dong Li , Damien Bonne , Li-Wei Zou\",\"doi\":\"10.1016/j.cbi.2025.111557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proline endopeptidase (PREP), as a serine protease, plays a crucial role in human physiology and pathology, and is intricately linked to the genesis and progression of a spectrum of illnesses. The fluorescent substrates currently used for PREP lack ideal specificity and are unable to specifically detect PREP activity under physiological conditions. This limitation, to some extent, hinders the in-depth investigation of its physiological and pathophysiological functions. Beyond its enzymatic capabilities, PREP's physiological functions extend to the modulation of protein-protein interactions (PPIs), a dimension whose significance is only beginning to be recognized, and investigations into how PREP inhibitors might influence these PPIs remain sparse. Therefore, based on the outline of the distribution and structural characteristics of PREP, this review systematically summarized the structure-activity relationship (SAR) of PREP ligands concerning their potency and specificity, the associated recognition mechanisms, as well as the regulatory impact of PREP ligands on PPIs. Finally, the obstacles and future prospects of PREP ligands were emphasized, in order to provide suggestions and help for the design and development of PREP specific substrates and inhibitors.</div></div>\",\"PeriodicalId\":274,\"journal\":{\"name\":\"Chemico-Biological Interactions\",\"volume\":\"416 \",\"pages\":\"Article 111557\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemico-Biological Interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009279725001875\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279725001875","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Recent progress of proline endopeptidase ligands and their effects on protein-protein interactions
Proline endopeptidase (PREP), as a serine protease, plays a crucial role in human physiology and pathology, and is intricately linked to the genesis and progression of a spectrum of illnesses. The fluorescent substrates currently used for PREP lack ideal specificity and are unable to specifically detect PREP activity under physiological conditions. This limitation, to some extent, hinders the in-depth investigation of its physiological and pathophysiological functions. Beyond its enzymatic capabilities, PREP's physiological functions extend to the modulation of protein-protein interactions (PPIs), a dimension whose significance is only beginning to be recognized, and investigations into how PREP inhibitors might influence these PPIs remain sparse. Therefore, based on the outline of the distribution and structural characteristics of PREP, this review systematically summarized the structure-activity relationship (SAR) of PREP ligands concerning their potency and specificity, the associated recognition mechanisms, as well as the regulatory impact of PREP ligands on PPIs. Finally, the obstacles and future prospects of PREP ligands were emphasized, in order to provide suggestions and help for the design and development of PREP specific substrates and inhibitors.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.