Borong Zhang , Martin Guerra , Qin Li , Leonardo Zepeda-Núñez
{"title":"反向投影扩散:用扩散模型求解宽带逆散射问题","authors":"Borong Zhang , Martin Guerra , Qin Li , Leonardo Zepeda-Núñez","doi":"10.1016/j.cma.2025.118036","DOIUrl":null,"url":null,"abstract":"<div><div>We present <em>Wideband Back-Projection Diffusion</em>, an end-to-end probabilistic framework for approximating the posterior distribution induced by the inverse scattering map from wideband scattering data. This framework produces highly accurate reconstructions, leveraging conditional diffusion models to draw samples, and also honors the symmetries of the underlying physics of wave-propagation. The procedure is factored into two steps: the first step, inspired by the filtered back-propagation formula, transforms data into a physics-based latent representation, while the second step learns a conditional score function conditioned on this latent representation. These two steps individually obey their associated symmetries and are amenable to compression by imposing the rank structure found in the filtered back-projection formula. Empirically, our framework has both low sample and computational complexity, with its number of parameters scaling only sub-linearly with the target resolution, and has stable training dynamics. It provides sharp reconstructions effortlessly and is capable of recovering even sub-Nyquist features in the multiple-scattering regime.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"443 ","pages":"Article 118036"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Back-Projection Diffusion: Solving the wideband inverse scattering problem with diffusion models\",\"authors\":\"Borong Zhang , Martin Guerra , Qin Li , Leonardo Zepeda-Núñez\",\"doi\":\"10.1016/j.cma.2025.118036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present <em>Wideband Back-Projection Diffusion</em>, an end-to-end probabilistic framework for approximating the posterior distribution induced by the inverse scattering map from wideband scattering data. This framework produces highly accurate reconstructions, leveraging conditional diffusion models to draw samples, and also honors the symmetries of the underlying physics of wave-propagation. The procedure is factored into two steps: the first step, inspired by the filtered back-propagation formula, transforms data into a physics-based latent representation, while the second step learns a conditional score function conditioned on this latent representation. These two steps individually obey their associated symmetries and are amenable to compression by imposing the rank structure found in the filtered back-projection formula. Empirically, our framework has both low sample and computational complexity, with its number of parameters scaling only sub-linearly with the target resolution, and has stable training dynamics. It provides sharp reconstructions effortlessly and is capable of recovering even sub-Nyquist features in the multiple-scattering regime.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"443 \",\"pages\":\"Article 118036\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525003081\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525003081","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Back-Projection Diffusion: Solving the wideband inverse scattering problem with diffusion models
We present Wideband Back-Projection Diffusion, an end-to-end probabilistic framework for approximating the posterior distribution induced by the inverse scattering map from wideband scattering data. This framework produces highly accurate reconstructions, leveraging conditional diffusion models to draw samples, and also honors the symmetries of the underlying physics of wave-propagation. The procedure is factored into two steps: the first step, inspired by the filtered back-propagation formula, transforms data into a physics-based latent representation, while the second step learns a conditional score function conditioned on this latent representation. These two steps individually obey their associated symmetries and are amenable to compression by imposing the rank structure found in the filtered back-projection formula. Empirically, our framework has both low sample and computational complexity, with its number of parameters scaling only sub-linearly with the target resolution, and has stable training dynamics. It provides sharp reconstructions effortlessly and is capable of recovering even sub-Nyquist features in the multiple-scattering regime.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.