一种用于多通道语音增强的双分支深度交互网络

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaoyu Lian, Nan Xia, Gaole Dai, Hongqin Yang
{"title":"一种用于多通道语音增强的双分支深度交互网络","authors":"Xiaoyu Lian,&nbsp;Nan Xia,&nbsp;Gaole Dai,&nbsp;Hongqin Yang","doi":"10.1016/j.neucom.2025.130412","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-channel speech enhancement removes noise and reverberation interference from noisy speech signals captured by microphone arrays. In this paper, we propose a dual-branch deep interaction network (DBDINet) for multi-channel speech enhancement, which complements the important features of both time domain and time–frequency domain in the speech signal. We design a waveform and complex spectrum interaction module (WCIM) to interact deeply with the information of two domains and propose an efficient Conformer (eConformer) as a transition layer of the network to improve network efficiency. We conducted extensive experiments on the synthetic AISHELL-1 dataset and the CHiME-3 dataset. The experimental results show that the proposed method achieves competitive performance on several metrics while maintaining lower computational complexity with faster inference speed than existing advanced methods.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"643 ","pages":"Article 130412"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dual-branch deep interaction network for multi-channel speech enhancement\",\"authors\":\"Xiaoyu Lian,&nbsp;Nan Xia,&nbsp;Gaole Dai,&nbsp;Hongqin Yang\",\"doi\":\"10.1016/j.neucom.2025.130412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-channel speech enhancement removes noise and reverberation interference from noisy speech signals captured by microphone arrays. In this paper, we propose a dual-branch deep interaction network (DBDINet) for multi-channel speech enhancement, which complements the important features of both time domain and time–frequency domain in the speech signal. We design a waveform and complex spectrum interaction module (WCIM) to interact deeply with the information of two domains and propose an efficient Conformer (eConformer) as a transition layer of the network to improve network efficiency. We conducted extensive experiments on the synthetic AISHELL-1 dataset and the CHiME-3 dataset. The experimental results show that the proposed method achieves competitive performance on several metrics while maintaining lower computational complexity with faster inference speed than existing advanced methods.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"643 \",\"pages\":\"Article 130412\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225010847\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225010847","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多通道语音增强消除噪声和混响干扰从噪声语音信号捕获的麦克风阵列。本文提出了一种用于多通道语音增强的双分支深度交互网络(DBDINet),它补充了语音信号中时域和时频域的重要特征。我们设计了一个波形和复杂频谱交互模块(WCIM)来与两个域的信息进行深度交互,并提出了一个高效的共形器(eConformer)作为网络的过渡层来提高网络效率。我们在合成的AISHELL-1数据集和CHiME-3数据集上进行了大量的实验。实验结果表明,与现有的先进方法相比,该方法在保持较低的计算复杂度和较快的推理速度的同时,在多个指标上取得了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dual-branch deep interaction network for multi-channel speech enhancement
Multi-channel speech enhancement removes noise and reverberation interference from noisy speech signals captured by microphone arrays. In this paper, we propose a dual-branch deep interaction network (DBDINet) for multi-channel speech enhancement, which complements the important features of both time domain and time–frequency domain in the speech signal. We design a waveform and complex spectrum interaction module (WCIM) to interact deeply with the information of two domains and propose an efficient Conformer (eConformer) as a transition layer of the network to improve network efficiency. We conducted extensive experiments on the synthetic AISHELL-1 dataset and the CHiME-3 dataset. The experimental results show that the proposed method achieves competitive performance on several metrics while maintaining lower computational complexity with faster inference speed than existing advanced methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信