{"title":"基于云的电力物联网协同数据压缩技术","authors":"Qiong Wang , Yongbo Zhou , Jianyong Gao","doi":"10.1016/j.eij.2025.100696","DOIUrl":null,"url":null,"abstract":"<div><div>To address the challenge of explosive data growth in power IoT systems, this study develops a cloud-edge collaborative multi-task computing framework for efficient compression of heterogeneous data. The proposed system builds upon a “microservice-containerization-Kubernetes” architecture that enables parallel processing of multi-source IoT data collected through perception layer devices. At the edge layer, a hybrid performance ontology algorithm first integrates diverse data sources, followed by a two-stage compression approach: wavelet transforms perform initial data aggregation, while tensor Tucker decomposition enables secondary compression for optimized data reduction. Experimental results demonstrate the framework’s effectiveness in maintaining stable IoT network operations while achieving compression ratios below 40%, significantly improving upon traditional methods in both efficiency and reliability for power IoT applications.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"30 ","pages":"Article 100696"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloud based collaborative data compression technology for power Internet of Things\",\"authors\":\"Qiong Wang , Yongbo Zhou , Jianyong Gao\",\"doi\":\"10.1016/j.eij.2025.100696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the challenge of explosive data growth in power IoT systems, this study develops a cloud-edge collaborative multi-task computing framework for efficient compression of heterogeneous data. The proposed system builds upon a “microservice-containerization-Kubernetes” architecture that enables parallel processing of multi-source IoT data collected through perception layer devices. At the edge layer, a hybrid performance ontology algorithm first integrates diverse data sources, followed by a two-stage compression approach: wavelet transforms perform initial data aggregation, while tensor Tucker decomposition enables secondary compression for optimized data reduction. Experimental results demonstrate the framework’s effectiveness in maintaining stable IoT network operations while achieving compression ratios below 40%, significantly improving upon traditional methods in both efficiency and reliability for power IoT applications.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"30 \",\"pages\":\"Article 100696\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866525000891\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000891","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cloud based collaborative data compression technology for power Internet of Things
To address the challenge of explosive data growth in power IoT systems, this study develops a cloud-edge collaborative multi-task computing framework for efficient compression of heterogeneous data. The proposed system builds upon a “microservice-containerization-Kubernetes” architecture that enables parallel processing of multi-source IoT data collected through perception layer devices. At the edge layer, a hybrid performance ontology algorithm first integrates diverse data sources, followed by a two-stage compression approach: wavelet transforms perform initial data aggregation, while tensor Tucker decomposition enables secondary compression for optimized data reduction. Experimental results demonstrate the framework’s effectiveness in maintaining stable IoT network operations while achieving compression ratios below 40%, significantly improving upon traditional methods in both efficiency and reliability for power IoT applications.
期刊介绍:
The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.