基于p,q准轮正交模糊混合聚合算子的自适应多准则群体最优作物选择决策

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Muhammad Rahim , Kamal Shah , Haifa Alqahtani , Somayah Abdualziz Alhabeeb , Hamiden Abd El-Wahed Khalifa
{"title":"基于p,q准轮正交模糊混合聚合算子的自适应多准则群体最优作物选择决策","authors":"Muhammad Rahim ,&nbsp;Kamal Shah ,&nbsp;Haifa Alqahtani ,&nbsp;Somayah Abdualziz Alhabeeb ,&nbsp;Hamiden Abd El-Wahed Khalifa","doi":"10.1016/j.eswa.2025.128126","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces the <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>-</mo></mrow></math></span> Quasirung Orthopair Fuzzy Hybrid Aggregation (<span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>-</mo></mrow></math></span> QOFHA) operator, designed to enhance multi-criteria group decision-making (MCGDM) under uncertainty and imprecise information. Unlike traditional aggregation operators, which lack flexibility in handling dynamic environmental factors, the proposed <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>-</mo></mrow></math></span> QOFHA operator incorporates two adjustable parameters, <span><math><mi>p</mi></math></span> and <span><math><mi>q</mi></math></span>, enabling adaptive control over decision-making. These parameters allow decision-makers to account for environmental changes, weather conditions, and external factors affecting agricultural productivity, making the approach more robust and practical for real-world applications. The study applies the proposed method to an optimized crop selection problem, evaluating seven crop alternatives (wheat, rice, maize, sugarcane, soybean, barley, and cotton) based on five critical criteria (soil fertility, water availability, temperature, market demand, and sustainability). The entropy-based weighting approach is used to determine criteria importance. Unlike traditional fuzzy MCDM models, which treat uncertainty rigidly, the <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>-</mo></mrow></math></span> QOFHA operator dynamically adjusts membership and non-membership values, ensuring a more realistic and flexible decision-making process. Sensitivity analysis further demonstrates that adjusting <span><math><mi>p</mi></math></span> and <span><math><mi>q</mi></math></span> enables for adaptive responses to changing agricultural conditions, outperforming conventional fuzzy aggregation approaches. The findings highlight the superiority of the proposed <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>-</mo></mrow></math></span> QOFHA operator in handling uncertainty and adapting to external influences, making it a powerful tool for sustainable agricultural decision-making. This study provides a foundation for applying advanced fuzzy MCDM models in climate adaptation, resource management, and other complex decision-making scenarios where dynamic environmental factors play a crucial role.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"286 ","pages":"Article 128126"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Multi-Criteria group Decision-Making for optimized crop selection using the p,q- quasirung orthopair fuzzy hybrid aggregation operator\",\"authors\":\"Muhammad Rahim ,&nbsp;Kamal Shah ,&nbsp;Haifa Alqahtani ,&nbsp;Somayah Abdualziz Alhabeeb ,&nbsp;Hamiden Abd El-Wahed Khalifa\",\"doi\":\"10.1016/j.eswa.2025.128126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces the <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>-</mo></mrow></math></span> Quasirung Orthopair Fuzzy Hybrid Aggregation (<span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>-</mo></mrow></math></span> QOFHA) operator, designed to enhance multi-criteria group decision-making (MCGDM) under uncertainty and imprecise information. Unlike traditional aggregation operators, which lack flexibility in handling dynamic environmental factors, the proposed <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>-</mo></mrow></math></span> QOFHA operator incorporates two adjustable parameters, <span><math><mi>p</mi></math></span> and <span><math><mi>q</mi></math></span>, enabling adaptive control over decision-making. These parameters allow decision-makers to account for environmental changes, weather conditions, and external factors affecting agricultural productivity, making the approach more robust and practical for real-world applications. The study applies the proposed method to an optimized crop selection problem, evaluating seven crop alternatives (wheat, rice, maize, sugarcane, soybean, barley, and cotton) based on five critical criteria (soil fertility, water availability, temperature, market demand, and sustainability). The entropy-based weighting approach is used to determine criteria importance. Unlike traditional fuzzy MCDM models, which treat uncertainty rigidly, the <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>-</mo></mrow></math></span> QOFHA operator dynamically adjusts membership and non-membership values, ensuring a more realistic and flexible decision-making process. Sensitivity analysis further demonstrates that adjusting <span><math><mi>p</mi></math></span> and <span><math><mi>q</mi></math></span> enables for adaptive responses to changing agricultural conditions, outperforming conventional fuzzy aggregation approaches. The findings highlight the superiority of the proposed <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>-</mo></mrow></math></span> QOFHA operator in handling uncertainty and adapting to external influences, making it a powerful tool for sustainable agricultural decision-making. This study provides a foundation for applying advanced fuzzy MCDM models in climate adaptation, resource management, and other complex decision-making scenarios where dynamic environmental factors play a crucial role.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"286 \",\"pages\":\"Article 128126\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425017476\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425017476","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种p,q-拟龙正形模糊混合聚合算子(p,q- QOFHA),旨在提高信息不确定和不精确情况下的多准则群体决策能力。与传统的聚合算子在处理动态环境因素时缺乏灵活性不同,本文提出的p,q- QOFHA算子结合了两个可调参数p和q,实现了对决策的自适应控制。这些参数使决策者能够考虑到环境变化、天气条件和影响农业生产力的外部因素,使该方法在实际应用中更加稳健和实用。该研究将提出的方法应用于一个优化的作物选择问题,根据五个关键标准(土壤肥力、水分供应、温度、市场需求和可持续性)评估七种作物替代品(小麦、水稻、玉米、甘蔗、大豆、大麦和棉花)。基于熵的加权方法用于确定标准的重要性。与传统模糊MCDM模型严格处理不确定性不同,p,q- QOFHA算子动态调整隶属和非隶属值,确保决策过程更加现实和灵活。敏感性分析进一步表明,调整p和q能够对不断变化的农业条件做出适应性响应,优于传统的模糊聚合方法。研究结果突出了p,q- QOFHA算子在处理不确定性和适应外部影响方面的优势,使其成为可持续农业决策的有力工具。该研究为将先进的模糊MCDM模型应用于气候适应、资源管理和其他动态环境因素起关键作用的复杂决策场景提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Multi-Criteria group Decision-Making for optimized crop selection using the p,q- quasirung orthopair fuzzy hybrid aggregation operator
This study introduces the p,q- Quasirung Orthopair Fuzzy Hybrid Aggregation (p,q- QOFHA) operator, designed to enhance multi-criteria group decision-making (MCGDM) under uncertainty and imprecise information. Unlike traditional aggregation operators, which lack flexibility in handling dynamic environmental factors, the proposed p,q- QOFHA operator incorporates two adjustable parameters, p and q, enabling adaptive control over decision-making. These parameters allow decision-makers to account for environmental changes, weather conditions, and external factors affecting agricultural productivity, making the approach more robust and practical for real-world applications. The study applies the proposed method to an optimized crop selection problem, evaluating seven crop alternatives (wheat, rice, maize, sugarcane, soybean, barley, and cotton) based on five critical criteria (soil fertility, water availability, temperature, market demand, and sustainability). The entropy-based weighting approach is used to determine criteria importance. Unlike traditional fuzzy MCDM models, which treat uncertainty rigidly, the p,q- QOFHA operator dynamically adjusts membership and non-membership values, ensuring a more realistic and flexible decision-making process. Sensitivity analysis further demonstrates that adjusting p and q enables for adaptive responses to changing agricultural conditions, outperforming conventional fuzzy aggregation approaches. The findings highlight the superiority of the proposed p,q- QOFHA operator in handling uncertainty and adapting to external influences, making it a powerful tool for sustainable agricultural decision-making. This study provides a foundation for applying advanced fuzzy MCDM models in climate adaptation, resource management, and other complex decision-making scenarios where dynamic environmental factors play a crucial role.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信