利用尼日利亚人口统计数据建立拉沙热流行模型的数学分析

Abdullahi M. Auwal , Salisu Usaini
{"title":"利用尼日利亚人口统计数据建立拉沙热流行模型的数学分析","authors":"Abdullahi M. Auwal ,&nbsp;Salisu Usaini","doi":"10.1016/j.fraope.2025.100276","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we proposed and analysed a non-linear deterministic mathematical model for the transmission dynamics of Lassa fever virus in Nigeria. The basic properties of the model are presented. For the linear stability of the model equilibria the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and other important threshold parameters associated with existence and stability of endemic state are obtained. We showed that the model exhibits two equilibrium points namely: the Lassa fever-free equilibrium point and the endemic equilibrium point. The Lassa fever-free equilibrium <span><math><mover><mrow><mi>Σ</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is the only local asymptotic stable equilibrium if the threshold parameter in relation to humans, <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn><mi>h</mi></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span> and it is not stable when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn><mi>h</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>. While the endemic equilibrium point <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> becomes asymptotically stable locally under certain conditions on the associated threshold parameters. Sensitivity analysis of the model parameters indicates that the natural mortality rate of rodents (<span><math><mi>ψ</mi></math></span>) and the effective contact rate of rodents (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>)are the basic control parameters associated with persistence or eradication of Lassa fever virus. More precisely, there is an inverse relationship between <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>ψ</mi></math></span> so that an increase of the latter leads to the decrease of the former one and vice-versa. In a similar note, increasing (decreasing) the value of <span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> keeping all other parameters fixed increases (decreases) the value of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We can infer from this result that good environmental sanitation and fumigation would reduce rodents’ population thereby reducing the value of <span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> which leads to the decrease of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"11 ","pages":"Article 100276"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical analysis of Lassa fever epidemic model utilizing Nigeria demographic data\",\"authors\":\"Abdullahi M. Auwal ,&nbsp;Salisu Usaini\",\"doi\":\"10.1016/j.fraope.2025.100276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we proposed and analysed a non-linear deterministic mathematical model for the transmission dynamics of Lassa fever virus in Nigeria. The basic properties of the model are presented. For the linear stability of the model equilibria the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and other important threshold parameters associated with existence and stability of endemic state are obtained. We showed that the model exhibits two equilibrium points namely: the Lassa fever-free equilibrium point and the endemic equilibrium point. The Lassa fever-free equilibrium <span><math><mover><mrow><mi>Σ</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is the only local asymptotic stable equilibrium if the threshold parameter in relation to humans, <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn><mi>h</mi></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span> and it is not stable when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn><mi>h</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>. While the endemic equilibrium point <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> becomes asymptotically stable locally under certain conditions on the associated threshold parameters. Sensitivity analysis of the model parameters indicates that the natural mortality rate of rodents (<span><math><mi>ψ</mi></math></span>) and the effective contact rate of rodents (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>)are the basic control parameters associated with persistence or eradication of Lassa fever virus. More precisely, there is an inverse relationship between <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>ψ</mi></math></span> so that an increase of the latter leads to the decrease of the former one and vice-versa. In a similar note, increasing (decreasing) the value of <span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> keeping all other parameters fixed increases (decreases) the value of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We can infer from this result that good environmental sanitation and fumigation would reduce rodents’ population thereby reducing the value of <span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> which leads to the decrease of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":100554,\"journal\":{\"name\":\"Franklin Open\",\"volume\":\"11 \",\"pages\":\"Article 100276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Franklin Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773186325000660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186325000660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并分析了尼日利亚拉沙热病毒传播动力学的非线性确定性数学模型。给出了该模型的基本性质。对于模型平衡点的线性稳定性,得到了基本繁殖数R0和与地方性状态存在性和稳定性相关的其他重要阈值参数。结果表明,该模型具有两个平衡点,即无拉沙热平衡点和地方性平衡点。当与人相关的阈值参数为R0h>;1时,无拉沙热平衡Σ≈是唯一的局部渐近稳定平衡,当R0h>;1时,无拉沙热平衡不稳定。而地方性平衡点Σ *在相关阈值参数的一定条件下局部渐近稳定。模型参数的敏感性分析表明,鼠自然死亡率(ψ)和鼠有效接触率(β3)是影响拉沙热病毒持续或根除的基本控制参数。更准确地说,在R0和ψ之间存在反比关系,使得后者的增加导致前者的减少,反之亦然。同样,在保持所有其他参数不变的情况下,增加(减少)β3的值会增加(减少)R0的值。由此可以推断,良好的环境卫生和熏蒸可以减少啮齿动物的数量,从而降低β3的值,从而导致R0的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical analysis of Lassa fever epidemic model utilizing Nigeria demographic data
In this paper, we proposed and analysed a non-linear deterministic mathematical model for the transmission dynamics of Lassa fever virus in Nigeria. The basic properties of the model are presented. For the linear stability of the model equilibria the basic reproduction number R0 and other important threshold parameters associated with existence and stability of endemic state are obtained. We showed that the model exhibits two equilibrium points namely: the Lassa fever-free equilibrium point and the endemic equilibrium point. The Lassa fever-free equilibrium Σ˜ is the only local asymptotic stable equilibrium if the threshold parameter in relation to humans, R0h<1 and it is not stable when R0h>1. While the endemic equilibrium point Σ becomes asymptotically stable locally under certain conditions on the associated threshold parameters. Sensitivity analysis of the model parameters indicates that the natural mortality rate of rodents (ψ) and the effective contact rate of rodents (β3)are the basic control parameters associated with persistence or eradication of Lassa fever virus. More precisely, there is an inverse relationship between R0 and ψ so that an increase of the latter leads to the decrease of the former one and vice-versa. In a similar note, increasing (decreasing) the value of β3 keeping all other parameters fixed increases (decreases) the value of R0. We can infer from this result that good environmental sanitation and fumigation would reduce rodents’ population thereby reducing the value of β3 which leads to the decrease of R0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信