{"title":"引力波湍流中的非对称双级联","authors":"Benoît Gay, Sébastien Galtier","doi":"10.1016/j.physd.2025.134712","DOIUrl":null,"url":null,"abstract":"<div><div>We numerically simulate, in both the forced and decay regimes, a fourth-order nonlinear diffusion equation derived from the kinetic equation of gravitational wave turbulence in the limit of strongly local quartic interactions. When a forcing is applied to an intermediate wavenumber <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, we observe a dual cascade of energy and wave action. In the stationary state, the associated flux ratio is proportional to <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, and the Kolmogorov–Zakharov spectra are recovered. In decaying turbulence, the study reveals that the wave action spectrum can extend to wavenumbers greater than the initial excitation <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with constant negative flux, while the energy flux is positive with a power law dependence in <span><math><mi>k</mi></math></span>. This leads to an unexpected result: a single inertial range with a Kolmogorov–Zakharov wave action spectrum extending progressively to wavenumbers larger than <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We also observe a wave action decay in time in <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span> while the front of the energy spectrum progresses according to a <span><math><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span> law. These properties can be understood with simple theoretical arguments.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"477 ","pages":"Article 134712"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric dual cascade in gravitational wave turbulence\",\"authors\":\"Benoît Gay, Sébastien Galtier\",\"doi\":\"10.1016/j.physd.2025.134712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We numerically simulate, in both the forced and decay regimes, a fourth-order nonlinear diffusion equation derived from the kinetic equation of gravitational wave turbulence in the limit of strongly local quartic interactions. When a forcing is applied to an intermediate wavenumber <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, we observe a dual cascade of energy and wave action. In the stationary state, the associated flux ratio is proportional to <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, and the Kolmogorov–Zakharov spectra are recovered. In decaying turbulence, the study reveals that the wave action spectrum can extend to wavenumbers greater than the initial excitation <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with constant negative flux, while the energy flux is positive with a power law dependence in <span><math><mi>k</mi></math></span>. This leads to an unexpected result: a single inertial range with a Kolmogorov–Zakharov wave action spectrum extending progressively to wavenumbers larger than <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We also observe a wave action decay in time in <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span> while the front of the energy spectrum progresses according to a <span><math><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span> law. These properties can be understood with simple theoretical arguments.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"477 \",\"pages\":\"Article 134712\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925001897\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001897","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Asymmetric dual cascade in gravitational wave turbulence
We numerically simulate, in both the forced and decay regimes, a fourth-order nonlinear diffusion equation derived from the kinetic equation of gravitational wave turbulence in the limit of strongly local quartic interactions. When a forcing is applied to an intermediate wavenumber , we observe a dual cascade of energy and wave action. In the stationary state, the associated flux ratio is proportional to , and the Kolmogorov–Zakharov spectra are recovered. In decaying turbulence, the study reveals that the wave action spectrum can extend to wavenumbers greater than the initial excitation with constant negative flux, while the energy flux is positive with a power law dependence in . This leads to an unexpected result: a single inertial range with a Kolmogorov–Zakharov wave action spectrum extending progressively to wavenumbers larger than . We also observe a wave action decay in time in while the front of the energy spectrum progresses according to a law. These properties can be understood with simple theoretical arguments.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.