Xiaoming Lu, Daniel J. Pritko, Megan E. Abravanel, Jonah R. Huggins, Oluwaferanmi Ogunleye, Tirthankar Biswas, Katia C. Ashy, Semaj K. Woods, Mariclaire W.T. Livingston, Mark A. Blenner* and Marc R. Birtwistle*,
{"title":"基因编码荧光条形码允许单细胞分析通过光谱流式细胞术","authors":"Xiaoming Lu, Daniel J. Pritko, Megan E. Abravanel, Jonah R. Huggins, Oluwaferanmi Ogunleye, Tirthankar Biswas, Katia C. Ashy, Semaj K. Woods, Mariclaire W.T. Livingston, Mark A. Blenner* and Marc R. Birtwistle*, ","doi":"10.1021/acssynbio.4c0080710.1021/acssynbio.4c00807","DOIUrl":null,"url":null,"abstract":"<p >Genetically encoded, single-cell barcodes are broadly useful for experimental tasks such as lineage tracing or genetic screens. For such applications, a barcode library would ideally have high diversity (many unique barcodes), nondestructive identification (repeated measurements in the same cells or population), and fast, inexpensive readout (many cells and conditions). Current nucleic acid barcoding methods generate high diversity but require destructive and slow/expensive readout, and current fluorescence barcoding methods are nondestructive, fast, and inexpensive to readout but lack high diversity. We recently proposed a theory for how fluorescent protein combinations may generate a high-diversity barcode library with nondestructive, fast, and inexpensive identification. Here, we present an initial experimental proof-of-concept by generating a library of ∼150 barcodes from two-way combinations of 18 fluorescent proteins, 61 of which are tested experimentally. We use a pooled cloning strategy to generate a barcode library that is validated to contain every possible combination of the 18 fluorescent proteins. Experimental results using single mammalian cells and spectral flow cytometry demonstrate excellent classification performance of individual fluorescent proteins, with the exception of mTFP1, and of most evaluated barcodes, with many true positive rates >99%. The library is compatible with genetic screening for hundreds of genes (or gene pairs) and lineage tracing hundreds of clones. This work lays a foundation for greater diversity libraries (potentially ∼10<sup>5</sup> and more) generated from hundreds of spectrally resolvable tandem fluorescent protein probes.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 5","pages":"1533–1548 1533–1548"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetically Encoded Fluorescence Barcodes Allow for Single-Cell Analysis via Spectral Flow Cytometry\",\"authors\":\"Xiaoming Lu, Daniel J. Pritko, Megan E. Abravanel, Jonah R. Huggins, Oluwaferanmi Ogunleye, Tirthankar Biswas, Katia C. Ashy, Semaj K. Woods, Mariclaire W.T. Livingston, Mark A. Blenner* and Marc R. Birtwistle*, \",\"doi\":\"10.1021/acssynbio.4c0080710.1021/acssynbio.4c00807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Genetically encoded, single-cell barcodes are broadly useful for experimental tasks such as lineage tracing or genetic screens. For such applications, a barcode library would ideally have high diversity (many unique barcodes), nondestructive identification (repeated measurements in the same cells or population), and fast, inexpensive readout (many cells and conditions). Current nucleic acid barcoding methods generate high diversity but require destructive and slow/expensive readout, and current fluorescence barcoding methods are nondestructive, fast, and inexpensive to readout but lack high diversity. We recently proposed a theory for how fluorescent protein combinations may generate a high-diversity barcode library with nondestructive, fast, and inexpensive identification. Here, we present an initial experimental proof-of-concept by generating a library of ∼150 barcodes from two-way combinations of 18 fluorescent proteins, 61 of which are tested experimentally. We use a pooled cloning strategy to generate a barcode library that is validated to contain every possible combination of the 18 fluorescent proteins. Experimental results using single mammalian cells and spectral flow cytometry demonstrate excellent classification performance of individual fluorescent proteins, with the exception of mTFP1, and of most evaluated barcodes, with many true positive rates >99%. The library is compatible with genetic screening for hundreds of genes (or gene pairs) and lineage tracing hundreds of clones. This work lays a foundation for greater diversity libraries (potentially ∼10<sup>5</sup> and more) generated from hundreds of spectrally resolvable tandem fluorescent protein probes.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\"14 5\",\"pages\":\"1533–1548 1533–1548\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.4c00807\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00807","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Genetically Encoded Fluorescence Barcodes Allow for Single-Cell Analysis via Spectral Flow Cytometry
Genetically encoded, single-cell barcodes are broadly useful for experimental tasks such as lineage tracing or genetic screens. For such applications, a barcode library would ideally have high diversity (many unique barcodes), nondestructive identification (repeated measurements in the same cells or population), and fast, inexpensive readout (many cells and conditions). Current nucleic acid barcoding methods generate high diversity but require destructive and slow/expensive readout, and current fluorescence barcoding methods are nondestructive, fast, and inexpensive to readout but lack high diversity. We recently proposed a theory for how fluorescent protein combinations may generate a high-diversity barcode library with nondestructive, fast, and inexpensive identification. Here, we present an initial experimental proof-of-concept by generating a library of ∼150 barcodes from two-way combinations of 18 fluorescent proteins, 61 of which are tested experimentally. We use a pooled cloning strategy to generate a barcode library that is validated to contain every possible combination of the 18 fluorescent proteins. Experimental results using single mammalian cells and spectral flow cytometry demonstrate excellent classification performance of individual fluorescent proteins, with the exception of mTFP1, and of most evaluated barcodes, with many true positive rates >99%. The library is compatible with genetic screening for hundreds of genes (or gene pairs) and lineage tracing hundreds of clones. This work lays a foundation for greater diversity libraries (potentially ∼105 and more) generated from hundreds of spectrally resolvable tandem fluorescent protein probes.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.