首次改进还是最佳改进?一个深入的局部搜索计算研究,以阐明一个优势主张

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Daniel Aloise, Robin Moine, Celso C. Ribeiro, Jonathan Jalbert
{"title":"首次改进还是最佳改进?一个深入的局部搜索计算研究,以阐明一个优势主张","authors":"Daniel Aloise, Robin Moine, Celso C. Ribeiro, Jonathan Jalbert","doi":"10.1016/j.ejor.2025.04.019","DOIUrl":null,"url":null,"abstract":"Local search methods start from a feasible solution and improve it by successive minor modifications until a solution that cannot be further improved is encountered. They are a common component of most metaheuristics. Two fundamental local search strategies exist: first-improvement and best-improvement. In this work, we perform an in-depth computational study using consistent performance metrics and rigorous statistical tests on several classes of test problems considering different initialization strategies and neighborhood structures to evaluate whether one strategy is dominant over the other. The numerical results show that computational experiments previously reported in the literature claiming the dominance of one strategy over the other for the TSP given an initialization method (random or greedy) cannot be extrapolated to other problems. Still, our results highlight the need for thorough experimentation and stress the importance of examining instance feature spaces and optimization landscapes to choose the best strategy for each problem and context, as no rule of thumb seems to exist for identifying the best local search strategy in the general case.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"30 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-improvement or best-improvement? An in-depth local search computational study to elucidate a dominance claim\",\"authors\":\"Daniel Aloise, Robin Moine, Celso C. Ribeiro, Jonathan Jalbert\",\"doi\":\"10.1016/j.ejor.2025.04.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local search methods start from a feasible solution and improve it by successive minor modifications until a solution that cannot be further improved is encountered. They are a common component of most metaheuristics. Two fundamental local search strategies exist: first-improvement and best-improvement. In this work, we perform an in-depth computational study using consistent performance metrics and rigorous statistical tests on several classes of test problems considering different initialization strategies and neighborhood structures to evaluate whether one strategy is dominant over the other. The numerical results show that computational experiments previously reported in the literature claiming the dominance of one strategy over the other for the TSP given an initialization method (random or greedy) cannot be extrapolated to other problems. Still, our results highlight the need for thorough experimentation and stress the importance of examining instance feature spaces and optimization landscapes to choose the best strategy for each problem and context, as no rule of thumb seems to exist for identifying the best local search strategy in the general case.\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejor.2025.04.019\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.04.019","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

局部搜索方法从一个可行的解开始,通过连续的小修改来改进它,直到遇到一个无法进一步改进的解。它们是大多数元启发式的常见组成部分。存在两种基本的局部搜索策略:第一改进和最佳改进。在这项工作中,我们对考虑不同初始化策略和邻域结构的几类测试问题进行了深入的计算研究,使用一致的性能指标和严格的统计测试来评估一种策略是否优于另一种策略。数值结果表明,先前文献中报道的计算实验表明,给定初始化方法(随机或贪婪),TSP的一种策略优于另一种策略,不能外推到其他问题。尽管如此,我们的结果强调了彻底实验的必要性,并强调了检查实例特征空间和优化景观的重要性,以便为每个问题和上下文选择最佳策略,因为在一般情况下,似乎不存在确定最佳局部搜索策略的经验法则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-improvement or best-improvement? An in-depth local search computational study to elucidate a dominance claim
Local search methods start from a feasible solution and improve it by successive minor modifications until a solution that cannot be further improved is encountered. They are a common component of most metaheuristics. Two fundamental local search strategies exist: first-improvement and best-improvement. In this work, we perform an in-depth computational study using consistent performance metrics and rigorous statistical tests on several classes of test problems considering different initialization strategies and neighborhood structures to evaluate whether one strategy is dominant over the other. The numerical results show that computational experiments previously reported in the literature claiming the dominance of one strategy over the other for the TSP given an initialization method (random or greedy) cannot be extrapolated to other problems. Still, our results highlight the need for thorough experimentation and stress the importance of examining instance feature spaces and optimization landscapes to choose the best strategy for each problem and context, as no rule of thumb seems to exist for identifying the best local search strategy in the general case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信