周期结构中双谐波散射PML问题的数值解

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Peijun Li, Xiaokai Yuan
{"title":"周期结构中双谐波散射PML问题的数值解","authors":"Peijun Li, Xiaokai Yuan","doi":"10.1093/imanum/draf025","DOIUrl":null,"url":null,"abstract":"Consider the interaction of biharmonic waves with a periodic array of cavities, characterized by the Kirchhoff–Love model. This paper investigates the perfectly matched layer (PML) formulation and its numerical solution to the governing biharmonic wave equation. The study establishes the well-posedness of the associated variational problem employing the Fredholm alternative theorem. Based on the examination of an auxiliary problem in the PML layer, exponential convergence of the PML solution is attained. Moreover, it develops and compares three decomposition methods alongside their corresponding mixed finite element formulations, incorporating interior penalty techniques for solving the PML problem. Numerical experiments validate the effectiveness of the proposed methods in absorbing outgoing waves within the PML layers and suppressing oscillations in the bending moment of biharmonic waves near the cavity’s surface.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"45 16 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical solution to the PML problem of the biharmonic wave scattering in periodic structures\",\"authors\":\"Peijun Li, Xiaokai Yuan\",\"doi\":\"10.1093/imanum/draf025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the interaction of biharmonic waves with a periodic array of cavities, characterized by the Kirchhoff–Love model. This paper investigates the perfectly matched layer (PML) formulation and its numerical solution to the governing biharmonic wave equation. The study establishes the well-posedness of the associated variational problem employing the Fredholm alternative theorem. Based on the examination of an auxiliary problem in the PML layer, exponential convergence of the PML solution is attained. Moreover, it develops and compares three decomposition methods alongside their corresponding mixed finite element formulations, incorporating interior penalty techniques for solving the PML problem. Numerical experiments validate the effectiveness of the proposed methods in absorbing outgoing waves within the PML layers and suppressing oscillations in the bending moment of biharmonic waves near the cavity’s surface.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"45 16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf025\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf025","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑双谐波与周期性空腔阵列的相互作用,以Kirchhoff-Love模型为特征。本文研究了控制双谐波波动方程的完全匹配层(PML)公式及其数值解。利用Fredholm替代定理,建立了相关变分问题的适定性。通过对PML层中的一个辅助问题的检验,得到了PML解的指数收敛性。此外,它开发并比较了三种分解方法及其相应的混合有限元公式,结合内部惩罚技术来解决PML问题。数值实验验证了该方法在吸收PML层内的出射波和抑制腔表面双谐波弯矩振荡方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution to the PML problem of the biharmonic wave scattering in periodic structures
Consider the interaction of biharmonic waves with a periodic array of cavities, characterized by the Kirchhoff–Love model. This paper investigates the perfectly matched layer (PML) formulation and its numerical solution to the governing biharmonic wave equation. The study establishes the well-posedness of the associated variational problem employing the Fredholm alternative theorem. Based on the examination of an auxiliary problem in the PML layer, exponential convergence of the PML solution is attained. Moreover, it develops and compares three decomposition methods alongside their corresponding mixed finite element formulations, incorporating interior penalty techniques for solving the PML problem. Numerical experiments validate the effectiveness of the proposed methods in absorbing outgoing waves within the PML layers and suppressing oscillations in the bending moment of biharmonic waves near the cavity’s surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信