{"title":"周期结构中双谐波散射PML问题的数值解","authors":"Peijun Li, Xiaokai Yuan","doi":"10.1093/imanum/draf025","DOIUrl":null,"url":null,"abstract":"Consider the interaction of biharmonic waves with a periodic array of cavities, characterized by the Kirchhoff–Love model. This paper investigates the perfectly matched layer (PML) formulation and its numerical solution to the governing biharmonic wave equation. The study establishes the well-posedness of the associated variational problem employing the Fredholm alternative theorem. Based on the examination of an auxiliary problem in the PML layer, exponential convergence of the PML solution is attained. Moreover, it develops and compares three decomposition methods alongside their corresponding mixed finite element formulations, incorporating interior penalty techniques for solving the PML problem. Numerical experiments validate the effectiveness of the proposed methods in absorbing outgoing waves within the PML layers and suppressing oscillations in the bending moment of biharmonic waves near the cavity’s surface.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"45 16 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical solution to the PML problem of the biharmonic wave scattering in periodic structures\",\"authors\":\"Peijun Li, Xiaokai Yuan\",\"doi\":\"10.1093/imanum/draf025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the interaction of biharmonic waves with a periodic array of cavities, characterized by the Kirchhoff–Love model. This paper investigates the perfectly matched layer (PML) formulation and its numerical solution to the governing biharmonic wave equation. The study establishes the well-posedness of the associated variational problem employing the Fredholm alternative theorem. Based on the examination of an auxiliary problem in the PML layer, exponential convergence of the PML solution is attained. Moreover, it develops and compares three decomposition methods alongside their corresponding mixed finite element formulations, incorporating interior penalty techniques for solving the PML problem. Numerical experiments validate the effectiveness of the proposed methods in absorbing outgoing waves within the PML layers and suppressing oscillations in the bending moment of biharmonic waves near the cavity’s surface.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"45 16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf025\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf025","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Numerical solution to the PML problem of the biharmonic wave scattering in periodic structures
Consider the interaction of biharmonic waves with a periodic array of cavities, characterized by the Kirchhoff–Love model. This paper investigates the perfectly matched layer (PML) formulation and its numerical solution to the governing biharmonic wave equation. The study establishes the well-posedness of the associated variational problem employing the Fredholm alternative theorem. Based on the examination of an auxiliary problem in the PML layer, exponential convergence of the PML solution is attained. Moreover, it develops and compares three decomposition methods alongside their corresponding mixed finite element formulations, incorporating interior penalty techniques for solving the PML problem. Numerical experiments validate the effectiveness of the proposed methods in absorbing outgoing waves within the PML layers and suppressing oscillations in the bending moment of biharmonic waves near the cavity’s surface.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.