基于速度-应力-涡量公式的稳定ρ型Brinkman-Forchheimer问题的基于Lρ空间的混合虚元方法

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Zeinab Gharibi, Mehdi Dehghan
{"title":"基于速度-应力-涡量公式的稳定ρ型Brinkman-Forchheimer问题的基于Lρ空间的混合虚元方法","authors":"Zeinab Gharibi, Mehdi Dehghan","doi":"10.1093/imanum/draf029","DOIUrl":null,"url":null,"abstract":"In this paper we devise and analyze a Banach-spaced mixed virtual element scheme for the steady motion of $\\rho $-type Brinkman–Forchheimer equation with strongly symmetric stress. Our approach introduces stress and vorticity as additional variables, enabling the elimination of pressure from the original unknowns, which can later be recovered using a postprocessing formula based solely on the stress. Consequently, a mixed variational formulation of the velocity and these new unknowns has been obtained within a Banach space framework. We then propose the $\\mathbb{H}({\\mathbf{div}}_\\varrho ;\\varOmega )$-conforming virtual element method, where $\\varrho $ is the conjugate of $\\rho $, to discretize this formulation and establish the existence and uniqueness of the discrete solution, along with stability bounds, using the Browder–Minty theorem without imposing any assumptions on the data. Furthermore, convergence analysis for all variables in their natural norms is conducted, demonstrating an optimal rate of convergence. Finally, several numerical experiments are presented to illustrate the efficiency and validity of the proposed method.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"14 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Lρ spaces-based mixed virtual element method for the steady ρ-type Brinkman–Forchheimer problem based on the velocity–stress–vorticity formulation\",\"authors\":\"Zeinab Gharibi, Mehdi Dehghan\",\"doi\":\"10.1093/imanum/draf029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we devise and analyze a Banach-spaced mixed virtual element scheme for the steady motion of $\\\\rho $-type Brinkman–Forchheimer equation with strongly symmetric stress. Our approach introduces stress and vorticity as additional variables, enabling the elimination of pressure from the original unknowns, which can later be recovered using a postprocessing formula based solely on the stress. Consequently, a mixed variational formulation of the velocity and these new unknowns has been obtained within a Banach space framework. We then propose the $\\\\mathbb{H}({\\\\mathbf{div}}_\\\\varrho ;\\\\varOmega )$-conforming virtual element method, where $\\\\varrho $ is the conjugate of $\\\\rho $, to discretize this formulation and establish the existence and uniqueness of the discrete solution, along with stability bounds, using the Browder–Minty theorem without imposing any assumptions on the data. Furthermore, convergence analysis for all variables in their natural norms is conducted, demonstrating an optimal rate of convergence. Finally, several numerical experiments are presented to illustrate the efficiency and validity of the proposed method.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf029\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf029","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文设计并分析了具有强对称应力的$\rho $型Brinkman-Forchheimer方程的稳定运动的banach -间隔混合虚元格式。我们的方法引入了应力和涡度作为附加变量,从而消除了原始未知的压力,之后可以使用仅基于应力的后处理公式来恢复压力。因此,在巴拿赫空间框架内得到了速度和这些新未知数的混合变分公式。然后,我们提出$\mathbb{H}({\mathbf{div}}_\varrho;\varOmega)$符合虚元法,其中$\varrho $是$\rho $的共轭,利用Browder-Minty定理,在不对数据施加任何假设的情况下,离散化该公式并建立离散解的存在性和唯一性,以及稳定性界。进一步,对所有变量在其自然范数中的收敛性进行了分析,证明了最优的收敛速度。最后,通过数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Lρ spaces-based mixed virtual element method for the steady ρ-type Brinkman–Forchheimer problem based on the velocity–stress–vorticity formulation
In this paper we devise and analyze a Banach-spaced mixed virtual element scheme for the steady motion of $\rho $-type Brinkman–Forchheimer equation with strongly symmetric stress. Our approach introduces stress and vorticity as additional variables, enabling the elimination of pressure from the original unknowns, which can later be recovered using a postprocessing formula based solely on the stress. Consequently, a mixed variational formulation of the velocity and these new unknowns has been obtained within a Banach space framework. We then propose the $\mathbb{H}({\mathbf{div}}_\varrho ;\varOmega )$-conforming virtual element method, where $\varrho $ is the conjugate of $\rho $, to discretize this formulation and establish the existence and uniqueness of the discrete solution, along with stability bounds, using the Browder–Minty theorem without imposing any assumptions on the data. Furthermore, convergence analysis for all variables in their natural norms is conducted, demonstrating an optimal rate of convergence. Finally, several numerical experiments are presented to illustrate the efficiency and validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信