{"title":"部分容错量子计算机的实用量子优势","authors":"Riki Toshio, Yutaro Akahoshi, Jun Fujisaki, Hirotaka Oshima, Shintaro Sato, Keisuke Fujii","doi":"10.1103/physrevx.15.021057","DOIUrl":null,"url":null,"abstract":"Achieving quantum speedups in practical tasks remains challenging for current noisy intermediate-scale quantum (NISQ) devices. These devices always encounter significant obstacles such as inevitable physical errors and the limited scalability of current near-term algorithms. Meanwhile, assuming a typical architecture for fault-tolerant quantum computing (FTQC), realistic applications inevitably require a vast number of qubits, typically exceeding 10</a:mn>6</a:mn></a:msup></a:math>, which seems far beyond near-term realization. In this work, to bridge the gap between the NISQ and FTQC eras, we propose an alternative approach to achieve practical quantum advantages on early-FTQC devices. Our framework is based on partially fault-tolerant logical operations to minimize spatial overhead and avoids the costly distillation techniques typically required for executing non-Clifford gates. To this end, we develop a space-time efficient state preparation protocol to generate an ancillary non-Clifford state consumed for implementing an analog rotation gate with an arbitrary small angle <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>θ</c:mi></c:math> and a remarkably low worst-case error rate below <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mi mathvariant=\"script\">O</e:mi><e:mo stretchy=\"false\">(</e:mo><e:mo stretchy=\"false\">|</e:mo><e:mi>θ</e:mi><e:mo stretchy=\"false\">|</e:mo><e:msub><e:mrow><e:mi>p</e:mi></e:mrow><e:mrow><e:mi>ph</e:mi></e:mrow></e:msub><e:mo stretchy=\"false\">)</e:mo></e:mrow></e:math>, where <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:msub><l:mi>p</l:mi><l:mi>ph</l:mi></l:msub></l:math> is the physical error rate. Furthermore, we propose several error suppression schemes tailored to our preparation protocol, which are essential to minimize the overhead for mitigating errors. Based on this framework, we present several promising applications that leverage the potential of our framework, including the Trotter simulation and quantum phase estimation (QPE). Notably, we demonstrate that our framework allows us to perform the QPE for an <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mo stretchy=\"false\">(</n:mo><n:mn>8</n:mn><n:mo>×</n:mo><n:mn>8</n:mn><n:mo stretchy=\"false\">)</n:mo></n:math>-site Hubbard model with fewer than <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mn>6.8</r:mn><r:mo>×</r:mo><r:msup><r:mn>10</r:mn><r:mn>4</r:mn></r:msup></r:math> qubits and an execution time of 10.6 days (or 14 min with full parallelization) under <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:msub><t:mi>p</t:mi><t:mi>ph</t:mi></t:msub><t:mo>=</t:mo><t:msup><t:mn>10</t:mn><t:mrow><t:mo>−</t:mo><t:mn>4</t:mn></t:mrow></t:msup></t:math>, which is significantly faster than recent classical estimation with tensor network techniques (density matrix renormalization group and projected entangled pair states). <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"10 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Quantum Advantage on Partially Fault-Tolerant Quantum Computer\",\"authors\":\"Riki Toshio, Yutaro Akahoshi, Jun Fujisaki, Hirotaka Oshima, Shintaro Sato, Keisuke Fujii\",\"doi\":\"10.1103/physrevx.15.021057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving quantum speedups in practical tasks remains challenging for current noisy intermediate-scale quantum (NISQ) devices. These devices always encounter significant obstacles such as inevitable physical errors and the limited scalability of current near-term algorithms. Meanwhile, assuming a typical architecture for fault-tolerant quantum computing (FTQC), realistic applications inevitably require a vast number of qubits, typically exceeding 10</a:mn>6</a:mn></a:msup></a:math>, which seems far beyond near-term realization. In this work, to bridge the gap between the NISQ and FTQC eras, we propose an alternative approach to achieve practical quantum advantages on early-FTQC devices. Our framework is based on partially fault-tolerant logical operations to minimize spatial overhead and avoids the costly distillation techniques typically required for executing non-Clifford gates. To this end, we develop a space-time efficient state preparation protocol to generate an ancillary non-Clifford state consumed for implementing an analog rotation gate with an arbitrary small angle <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi>θ</c:mi></c:math> and a remarkably low worst-case error rate below <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:mi mathvariant=\\\"script\\\">O</e:mi><e:mo stretchy=\\\"false\\\">(</e:mo><e:mo stretchy=\\\"false\\\">|</e:mo><e:mi>θ</e:mi><e:mo stretchy=\\\"false\\\">|</e:mo><e:msub><e:mrow><e:mi>p</e:mi></e:mrow><e:mrow><e:mi>ph</e:mi></e:mrow></e:msub><e:mo stretchy=\\\"false\\\">)</e:mo></e:mrow></e:math>, where <l:math xmlns:l=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><l:msub><l:mi>p</l:mi><l:mi>ph</l:mi></l:msub></l:math> is the physical error rate. Furthermore, we propose several error suppression schemes tailored to our preparation protocol, which are essential to minimize the overhead for mitigating errors. Based on this framework, we present several promising applications that leverage the potential of our framework, including the Trotter simulation and quantum phase estimation (QPE). Notably, we demonstrate that our framework allows us to perform the QPE for an <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><n:mo stretchy=\\\"false\\\">(</n:mo><n:mn>8</n:mn><n:mo>×</n:mo><n:mn>8</n:mn><n:mo stretchy=\\\"false\\\">)</n:mo></n:math>-site Hubbard model with fewer than <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><r:mn>6.8</r:mn><r:mo>×</r:mo><r:msup><r:mn>10</r:mn><r:mn>4</r:mn></r:msup></r:math> qubits and an execution time of 10.6 days (or 14 min with full parallelization) under <t:math xmlns:t=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><t:msub><t:mi>p</t:mi><t:mi>ph</t:mi></t:msub><t:mo>=</t:mo><t:msup><t:mn>10</t:mn><t:mrow><t:mo>−</t:mo><t:mn>4</t:mn></t:mrow></t:msup></t:math>, which is significantly faster than recent classical estimation with tensor network techniques (density matrix renormalization group and projected entangled pair states). <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021057\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021057","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Practical Quantum Advantage on Partially Fault-Tolerant Quantum Computer
Achieving quantum speedups in practical tasks remains challenging for current noisy intermediate-scale quantum (NISQ) devices. These devices always encounter significant obstacles such as inevitable physical errors and the limited scalability of current near-term algorithms. Meanwhile, assuming a typical architecture for fault-tolerant quantum computing (FTQC), realistic applications inevitably require a vast number of qubits, typically exceeding 106, which seems far beyond near-term realization. In this work, to bridge the gap between the NISQ and FTQC eras, we propose an alternative approach to achieve practical quantum advantages on early-FTQC devices. Our framework is based on partially fault-tolerant logical operations to minimize spatial overhead and avoids the costly distillation techniques typically required for executing non-Clifford gates. To this end, we develop a space-time efficient state preparation protocol to generate an ancillary non-Clifford state consumed for implementing an analog rotation gate with an arbitrary small angle θ and a remarkably low worst-case error rate below O(|θ|pph), where pph is the physical error rate. Furthermore, we propose several error suppression schemes tailored to our preparation protocol, which are essential to minimize the overhead for mitigating errors. Based on this framework, we present several promising applications that leverage the potential of our framework, including the Trotter simulation and quantum phase estimation (QPE). Notably, we demonstrate that our framework allows us to perform the QPE for an (8×8)-site Hubbard model with fewer than 6.8×104 qubits and an execution time of 10.6 days (or 14 min with full parallelization) under pph=10−4, which is significantly faster than recent classical estimation with tensor network techniques (density matrix renormalization group and projected entangled pair states). Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.