部分容错量子计算机的实用量子优势

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Riki Toshio, Yutaro Akahoshi, Jun Fujisaki, Hirotaka Oshima, Shintaro Sato, Keisuke Fujii
{"title":"部分容错量子计算机的实用量子优势","authors":"Riki Toshio, Yutaro Akahoshi, Jun Fujisaki, Hirotaka Oshima, Shintaro Sato, Keisuke Fujii","doi":"10.1103/physrevx.15.021057","DOIUrl":null,"url":null,"abstract":"Achieving quantum speedups in practical tasks remains challenging for current noisy intermediate-scale quantum (NISQ) devices. These devices always encounter significant obstacles such as inevitable physical errors and the limited scalability of current near-term algorithms. Meanwhile, assuming a typical architecture for fault-tolerant quantum computing (FTQC), realistic applications inevitably require a vast number of qubits, typically exceeding 10</a:mn>6</a:mn></a:msup></a:math>, which seems far beyond near-term realization. In this work, to bridge the gap between the NISQ and FTQC eras, we propose an alternative approach to achieve practical quantum advantages on early-FTQC devices. Our framework is based on partially fault-tolerant logical operations to minimize spatial overhead and avoids the costly distillation techniques typically required for executing non-Clifford gates. To this end, we develop a space-time efficient state preparation protocol to generate an ancillary non-Clifford state consumed for implementing an analog rotation gate with an arbitrary small angle <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>θ</c:mi></c:math> and a remarkably low worst-case error rate below <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mi mathvariant=\"script\">O</e:mi><e:mo stretchy=\"false\">(</e:mo><e:mo stretchy=\"false\">|</e:mo><e:mi>θ</e:mi><e:mo stretchy=\"false\">|</e:mo><e:msub><e:mrow><e:mi>p</e:mi></e:mrow><e:mrow><e:mi>ph</e:mi></e:mrow></e:msub><e:mo stretchy=\"false\">)</e:mo></e:mrow></e:math>, where <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:msub><l:mi>p</l:mi><l:mi>ph</l:mi></l:msub></l:math> is the physical error rate. Furthermore, we propose several error suppression schemes tailored to our preparation protocol, which are essential to minimize the overhead for mitigating errors. Based on this framework, we present several promising applications that leverage the potential of our framework, including the Trotter simulation and quantum phase estimation (QPE). Notably, we demonstrate that our framework allows us to perform the QPE for an <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mo stretchy=\"false\">(</n:mo><n:mn>8</n:mn><n:mo>×</n:mo><n:mn>8</n:mn><n:mo stretchy=\"false\">)</n:mo></n:math>-site Hubbard model with fewer than <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mn>6.8</r:mn><r:mo>×</r:mo><r:msup><r:mn>10</r:mn><r:mn>4</r:mn></r:msup></r:math> qubits and an execution time of 10.6 days (or 14 min with full parallelization) under <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:msub><t:mi>p</t:mi><t:mi>ph</t:mi></t:msub><t:mo>=</t:mo><t:msup><t:mn>10</t:mn><t:mrow><t:mo>−</t:mo><t:mn>4</t:mn></t:mrow></t:msup></t:math>, which is significantly faster than recent classical estimation with tensor network techniques (density matrix renormalization group and projected entangled pair states). <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"10 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Quantum Advantage on Partially Fault-Tolerant Quantum Computer\",\"authors\":\"Riki Toshio, Yutaro Akahoshi, Jun Fujisaki, Hirotaka Oshima, Shintaro Sato, Keisuke Fujii\",\"doi\":\"10.1103/physrevx.15.021057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving quantum speedups in practical tasks remains challenging for current noisy intermediate-scale quantum (NISQ) devices. These devices always encounter significant obstacles such as inevitable physical errors and the limited scalability of current near-term algorithms. Meanwhile, assuming a typical architecture for fault-tolerant quantum computing (FTQC), realistic applications inevitably require a vast number of qubits, typically exceeding 10</a:mn>6</a:mn></a:msup></a:math>, which seems far beyond near-term realization. In this work, to bridge the gap between the NISQ and FTQC eras, we propose an alternative approach to achieve practical quantum advantages on early-FTQC devices. Our framework is based on partially fault-tolerant logical operations to minimize spatial overhead and avoids the costly distillation techniques typically required for executing non-Clifford gates. To this end, we develop a space-time efficient state preparation protocol to generate an ancillary non-Clifford state consumed for implementing an analog rotation gate with an arbitrary small angle <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi>θ</c:mi></c:math> and a remarkably low worst-case error rate below <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:mi mathvariant=\\\"script\\\">O</e:mi><e:mo stretchy=\\\"false\\\">(</e:mo><e:mo stretchy=\\\"false\\\">|</e:mo><e:mi>θ</e:mi><e:mo stretchy=\\\"false\\\">|</e:mo><e:msub><e:mrow><e:mi>p</e:mi></e:mrow><e:mrow><e:mi>ph</e:mi></e:mrow></e:msub><e:mo stretchy=\\\"false\\\">)</e:mo></e:mrow></e:math>, where <l:math xmlns:l=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><l:msub><l:mi>p</l:mi><l:mi>ph</l:mi></l:msub></l:math> is the physical error rate. Furthermore, we propose several error suppression schemes tailored to our preparation protocol, which are essential to minimize the overhead for mitigating errors. Based on this framework, we present several promising applications that leverage the potential of our framework, including the Trotter simulation and quantum phase estimation (QPE). Notably, we demonstrate that our framework allows us to perform the QPE for an <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><n:mo stretchy=\\\"false\\\">(</n:mo><n:mn>8</n:mn><n:mo>×</n:mo><n:mn>8</n:mn><n:mo stretchy=\\\"false\\\">)</n:mo></n:math>-site Hubbard model with fewer than <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><r:mn>6.8</r:mn><r:mo>×</r:mo><r:msup><r:mn>10</r:mn><r:mn>4</r:mn></r:msup></r:math> qubits and an execution time of 10.6 days (or 14 min with full parallelization) under <t:math xmlns:t=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><t:msub><t:mi>p</t:mi><t:mi>ph</t:mi></t:msub><t:mo>=</t:mo><t:msup><t:mn>10</t:mn><t:mrow><t:mo>−</t:mo><t:mn>4</t:mn></t:mrow></t:msup></t:math>, which is significantly faster than recent classical estimation with tensor network techniques (density matrix renormalization group and projected entangled pair states). <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021057\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021057","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在实际任务中实现量子加速对于当前的噪声中尺度量子(NISQ)器件仍然具有挑战性。这些设备总是遇到重大障碍,例如不可避免的物理错误和当前近期算法的有限可扩展性。同时,假设容错量子计算(FTQC)的典型架构,实际应用不可避免地需要大量的量子比特,通常超过106,这似乎远远超出了近期实现的范围。在这项工作中,为了弥合NISQ和FTQC时代之间的差距,我们提出了一种在早期FTQC设备上实现实际量子优势的替代方法。我们的框架基于部分容错逻辑操作,以最小化空间开销,并避免执行非clifford门通常需要的昂贵的蒸馏技术。为此,我们开发了一种时空有效的状态准备协议,以生成辅助的非clifford状态,用于实现具有任意小角度θ的模拟旋转门,其最坏情况错误率低于O(|θ|pph),其中pph为物理错误率。此外,我们提出了几种适合我们的准备协议的错误抑制方案,这些方案对于最小化减少错误的开销至关重要。基于这个框架,我们提出了几个有前途的应用,利用我们的框架的潜力,包括Trotter模拟和量子相位估计(QPE)。值得注意的是,我们证明了我们的框架允许我们对(8×8)站点Hubbard模型执行QPE,其量子比特少于6.8×104,在pph=10−4下执行时间为10.6天(或完全并行化时为14分钟),这比最近使用张量网络技术(密度矩阵重整化群和投影纠缠对状态)的经典估计要快得多。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Quantum Advantage on Partially Fault-Tolerant Quantum Computer
Achieving quantum speedups in practical tasks remains challenging for current noisy intermediate-scale quantum (NISQ) devices. These devices always encounter significant obstacles such as inevitable physical errors and the limited scalability of current near-term algorithms. Meanwhile, assuming a typical architecture for fault-tolerant quantum computing (FTQC), realistic applications inevitably require a vast number of qubits, typically exceeding 106, which seems far beyond near-term realization. In this work, to bridge the gap between the NISQ and FTQC eras, we propose an alternative approach to achieve practical quantum advantages on early-FTQC devices. Our framework is based on partially fault-tolerant logical operations to minimize spatial overhead and avoids the costly distillation techniques typically required for executing non-Clifford gates. To this end, we develop a space-time efficient state preparation protocol to generate an ancillary non-Clifford state consumed for implementing an analog rotation gate with an arbitrary small angle θ and a remarkably low worst-case error rate below O(|θ|pph), where pph is the physical error rate. Furthermore, we propose several error suppression schemes tailored to our preparation protocol, which are essential to minimize the overhead for mitigating errors. Based on this framework, we present several promising applications that leverage the potential of our framework, including the Trotter simulation and quantum phase estimation (QPE). Notably, we demonstrate that our framework allows us to perform the QPE for an (8×8)-site Hubbard model with fewer than 6.8×104 qubits and an execution time of 10.6 days (or 14 min with full parallelization) under pph=104, which is significantly faster than recent classical estimation with tensor network techniques (density matrix renormalization group and projected entangled pair states). Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信