暴露在黑暗中的辐射

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Florian Niedermann and Martin S. Sloth
{"title":"暴露在黑暗中的辐射","authors":"Florian Niedermann and Martin S. Sloth","doi":"10.1088/1475-7516/2025/05/042","DOIUrl":null,"url":null,"abstract":"We explore the possibility that exotic forms of dark matter could expose humans on Earth or on prolonged space travel to a significant radiation dose. The radiation exposure from dark matter interacting with nuclei in the human body is generally assumed to be negligible compared to other sources of background radiation. However, as we discuss here, current data allow for dark matter models where this is not necessarily true. In particular, if dark matter is heavier and more strongly interacting than weakly interacting massive particle dark matter, it could act as ionizing radiation and deposit a significant amount of radiation energy in all or part of the human population, similar to or even exceeding the known radiation exposure from other background sources. Conversely, the non-observation of such an exposure can be used to constrain this type of heavier and more strongly interacting dark matter. We first consider the case where dark matter scatters elastically and identify the relevant parameter space in a model-independent way. We also discuss how previous bounds from cosmological probes, as well as atmospheric and space-based detectors, might be avoided, and how a re-analysis of existing radiation data, along with a simple experiment monitoring ionizing radiation in space with a lower detection threshold, could help constrain part of this parameter space. We finally propose a hypothetical dark matter candidate that scatters inelastically and argue that, in principle, one per mille of the Earth's population could attain a significant radiation dose from such a dark matter exposure in their lifetime.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"4 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation exposure from the dark\",\"authors\":\"Florian Niedermann and Martin S. Sloth\",\"doi\":\"10.1088/1475-7516/2025/05/042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the possibility that exotic forms of dark matter could expose humans on Earth or on prolonged space travel to a significant radiation dose. The radiation exposure from dark matter interacting with nuclei in the human body is generally assumed to be negligible compared to other sources of background radiation. However, as we discuss here, current data allow for dark matter models where this is not necessarily true. In particular, if dark matter is heavier and more strongly interacting than weakly interacting massive particle dark matter, it could act as ionizing radiation and deposit a significant amount of radiation energy in all or part of the human population, similar to or even exceeding the known radiation exposure from other background sources. Conversely, the non-observation of such an exposure can be used to constrain this type of heavier and more strongly interacting dark matter. We first consider the case where dark matter scatters elastically and identify the relevant parameter space in a model-independent way. We also discuss how previous bounds from cosmological probes, as well as atmospheric and space-based detectors, might be avoided, and how a re-analysis of existing radiation data, along with a simple experiment monitoring ionizing radiation in space with a lower detection threshold, could help constrain part of this parameter space. We finally propose a hypothetical dark matter candidate that scatters inelastically and argue that, in principle, one per mille of the Earth's population could attain a significant radiation dose from such a dark matter exposure in their lifetime.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/05/042\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/05/042","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了奇异形式的暗物质可能使地球上的人类或长时间的太空旅行暴露在大量辐射剂量下的可能性。一般认为,与其他背景辐射源相比,暗物质与人体内原子核相互作用产生的辐射暴露可以忽略不计。然而,正如我们在这里讨论的,目前的数据允许暗物质模型,这并不一定是正确的。特别是,如果暗物质比弱相互作用的大质量粒子暗物质更重,相互作用更强,它可以作为电离辐射,在全部或部分人群中沉积大量的辐射能量,类似甚至超过已知的来自其他背景源的辐射暴露。相反,没有观测到这样的暴露可以用来约束这类更重、更强相互作用的暗物质。我们首先考虑了暗物质弹性散射的情况,并以模型无关的方式确定了相关的参数空间。我们还讨论了如何避免先前来自宇宙探测器以及大气和空间探测器的边界,以及如何重新分析现有的辐射数据,以及使用较低探测阈值监测空间电离辐射的简单实验,可以帮助限制该参数空间的一部分。我们最后提出了一种假设的暗物质候选者,它是非弹性散射的,并认为,原则上,地球上每英里人口中就有一人在他们的一生中会受到这种暗物质暴露的显著辐射剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiation exposure from the dark
We explore the possibility that exotic forms of dark matter could expose humans on Earth or on prolonged space travel to a significant radiation dose. The radiation exposure from dark matter interacting with nuclei in the human body is generally assumed to be negligible compared to other sources of background radiation. However, as we discuss here, current data allow for dark matter models where this is not necessarily true. In particular, if dark matter is heavier and more strongly interacting than weakly interacting massive particle dark matter, it could act as ionizing radiation and deposit a significant amount of radiation energy in all or part of the human population, similar to or even exceeding the known radiation exposure from other background sources. Conversely, the non-observation of such an exposure can be used to constrain this type of heavier and more strongly interacting dark matter. We first consider the case where dark matter scatters elastically and identify the relevant parameter space in a model-independent way. We also discuss how previous bounds from cosmological probes, as well as atmospheric and space-based detectors, might be avoided, and how a re-analysis of existing radiation data, along with a simple experiment monitoring ionizing radiation in space with a lower detection threshold, could help constrain part of this parameter space. We finally propose a hypothetical dark matter candidate that scatters inelastically and argue that, in principle, one per mille of the Earth's population could attain a significant radiation dose from such a dark matter exposure in their lifetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信