Yifan Lu , Zunjian Bian , Jean-Louis Roujean , Hua Li , Frank M. Göttsche , Yajun Huang , Tengyuan Fan , Biao Cao , Yongming Du , Qing Xiao
{"title":"基于热点效应校正和温差约束的改进卫星尺度地表温度分量检索","authors":"Yifan Lu , Zunjian Bian , Jean-Louis Roujean , Hua Li , Frank M. Göttsche , Yajun Huang , Tengyuan Fan , Biao Cao , Yongming Du , Qing Xiao","doi":"10.1016/j.rse.2025.114794","DOIUrl":null,"url":null,"abstract":"<div><div>Land surface temperature (LST) plays an important role in Earth energy balance and water/carbon cycle processes and is recognized as an Essential Climate Variable (ECV) and an Essential Agricultural Variable (EAV). LST products that are issued from satellite observations mostly depict landscape-scale temperature due to their generally large footprint. This means that a pixel-based temperature integrates over various components, whereas temperature individual components are better suited for the purpose of evapotranspiration estimation, crop growth assessment, drought monitoring, etc. Thus, disentangling soil and vegetation temperatures is a real matter of concern. Moreover, most satellite-based LSTs are contaminated by directional effects due to the inherent anisotropy properties of most terrestrial targets. The characteristics of directional effects are closely linked to the properties of the target and controlled by the view and solar geometry. A singular angular signature is obtained in the hotspot geometry, i.e., when the sun, the satellite and the target are aligned. The hotspot phenomenon highlights the temperature differences between sunlit and shaded areas. However, due to the lack of adequate multi-angle observations and inaccurate portrayal or neglect of solar influence, the hotspot effect is often overlooked and has become a barrier for better inversion results at satellite scale. Therefore, hotspot effect needs to be better characterized, which here is achieved with a three-component model that distinguishes vegetation, sunlit and shaded soil temperature components and accounts for vegetation structure. Our work combines thermal infrared (TIR) observations from the Sea and Land Surface Temperature Radiometer (SLSTR) onboard the LEO (Low Earth Orbit) Sentinel-3, and two sensors onboard GEO (geostationary) satellites, i.e. the Advanced Himawari Imager (AHI) and Spinning Enhanced Visible and Infrared Imager (SEVIRI). Based on inversion with a Bayesian method and prior information associated with component temperature differences as constrained, the findings include: 1) Satellite observations throughout East Asia around noon indicate that for every 10 degrees change in angular distance from the sun, LST will on average vary by 0.6 K; 2) As a better constraint, the hotspot effect can benefit from multi-angle TIR observations to improve the retrieval of LST components, thereby reducing the root mean squared error (RMSE) from approximately 3.5 K, 5.8 K, and 4.1 K to 2.8 K, 3.5 K, and 3.1 K, at DM, EVO and KAL sites, respectively; 3) Based on a dataset simulated with a three-dimensional radiative transfer model, a significant inversion error may result if the hotspot is ignored for an angular distance between the viewing and solar directions that is smaller than 30<span><math><msup><mrow></mrow><mo>°</mo></msup></math></span>. Overall, considering the hotspot effect has the potential to reduce inversion noise and to separate the temperature difference between sunlit and shaded areas in a pixel, paving the way for producing stable temperature component products.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"326 ","pages":"Article 114794"},"PeriodicalIF":11.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved satellite-scale land surface temperature components retrieval with hotspot effect correction and temperature difference constraints\",\"authors\":\"Yifan Lu , Zunjian Bian , Jean-Louis Roujean , Hua Li , Frank M. Göttsche , Yajun Huang , Tengyuan Fan , Biao Cao , Yongming Du , Qing Xiao\",\"doi\":\"10.1016/j.rse.2025.114794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Land surface temperature (LST) plays an important role in Earth energy balance and water/carbon cycle processes and is recognized as an Essential Climate Variable (ECV) and an Essential Agricultural Variable (EAV). LST products that are issued from satellite observations mostly depict landscape-scale temperature due to their generally large footprint. This means that a pixel-based temperature integrates over various components, whereas temperature individual components are better suited for the purpose of evapotranspiration estimation, crop growth assessment, drought monitoring, etc. Thus, disentangling soil and vegetation temperatures is a real matter of concern. Moreover, most satellite-based LSTs are contaminated by directional effects due to the inherent anisotropy properties of most terrestrial targets. The characteristics of directional effects are closely linked to the properties of the target and controlled by the view and solar geometry. A singular angular signature is obtained in the hotspot geometry, i.e., when the sun, the satellite and the target are aligned. The hotspot phenomenon highlights the temperature differences between sunlit and shaded areas. However, due to the lack of adequate multi-angle observations and inaccurate portrayal or neglect of solar influence, the hotspot effect is often overlooked and has become a barrier for better inversion results at satellite scale. Therefore, hotspot effect needs to be better characterized, which here is achieved with a three-component model that distinguishes vegetation, sunlit and shaded soil temperature components and accounts for vegetation structure. Our work combines thermal infrared (TIR) observations from the Sea and Land Surface Temperature Radiometer (SLSTR) onboard the LEO (Low Earth Orbit) Sentinel-3, and two sensors onboard GEO (geostationary) satellites, i.e. the Advanced Himawari Imager (AHI) and Spinning Enhanced Visible and Infrared Imager (SEVIRI). Based on inversion with a Bayesian method and prior information associated with component temperature differences as constrained, the findings include: 1) Satellite observations throughout East Asia around noon indicate that for every 10 degrees change in angular distance from the sun, LST will on average vary by 0.6 K; 2) As a better constraint, the hotspot effect can benefit from multi-angle TIR observations to improve the retrieval of LST components, thereby reducing the root mean squared error (RMSE) from approximately 3.5 K, 5.8 K, and 4.1 K to 2.8 K, 3.5 K, and 3.1 K, at DM, EVO and KAL sites, respectively; 3) Based on a dataset simulated with a three-dimensional radiative transfer model, a significant inversion error may result if the hotspot is ignored for an angular distance between the viewing and solar directions that is smaller than 30<span><math><msup><mrow></mrow><mo>°</mo></msup></math></span>. Overall, considering the hotspot effect has the potential to reduce inversion noise and to separate the temperature difference between sunlit and shaded areas in a pixel, paving the way for producing stable temperature component products.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"326 \",\"pages\":\"Article 114794\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725001981\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725001981","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Improved satellite-scale land surface temperature components retrieval with hotspot effect correction and temperature difference constraints
Land surface temperature (LST) plays an important role in Earth energy balance and water/carbon cycle processes and is recognized as an Essential Climate Variable (ECV) and an Essential Agricultural Variable (EAV). LST products that are issued from satellite observations mostly depict landscape-scale temperature due to their generally large footprint. This means that a pixel-based temperature integrates over various components, whereas temperature individual components are better suited for the purpose of evapotranspiration estimation, crop growth assessment, drought monitoring, etc. Thus, disentangling soil and vegetation temperatures is a real matter of concern. Moreover, most satellite-based LSTs are contaminated by directional effects due to the inherent anisotropy properties of most terrestrial targets. The characteristics of directional effects are closely linked to the properties of the target and controlled by the view and solar geometry. A singular angular signature is obtained in the hotspot geometry, i.e., when the sun, the satellite and the target are aligned. The hotspot phenomenon highlights the temperature differences between sunlit and shaded areas. However, due to the lack of adequate multi-angle observations and inaccurate portrayal or neglect of solar influence, the hotspot effect is often overlooked and has become a barrier for better inversion results at satellite scale. Therefore, hotspot effect needs to be better characterized, which here is achieved with a three-component model that distinguishes vegetation, sunlit and shaded soil temperature components and accounts for vegetation structure. Our work combines thermal infrared (TIR) observations from the Sea and Land Surface Temperature Radiometer (SLSTR) onboard the LEO (Low Earth Orbit) Sentinel-3, and two sensors onboard GEO (geostationary) satellites, i.e. the Advanced Himawari Imager (AHI) and Spinning Enhanced Visible and Infrared Imager (SEVIRI). Based on inversion with a Bayesian method and prior information associated with component temperature differences as constrained, the findings include: 1) Satellite observations throughout East Asia around noon indicate that for every 10 degrees change in angular distance from the sun, LST will on average vary by 0.6 K; 2) As a better constraint, the hotspot effect can benefit from multi-angle TIR observations to improve the retrieval of LST components, thereby reducing the root mean squared error (RMSE) from approximately 3.5 K, 5.8 K, and 4.1 K to 2.8 K, 3.5 K, and 3.1 K, at DM, EVO and KAL sites, respectively; 3) Based on a dataset simulated with a three-dimensional radiative transfer model, a significant inversion error may result if the hotspot is ignored for an angular distance between the viewing and solar directions that is smaller than 30. Overall, considering the hotspot effect has the potential to reduce inversion noise and to separate the temperature difference between sunlit and shaded areas in a pixel, paving the way for producing stable temperature component products.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.