机器学习分子动力学模拟PPTA晶体的冲击响应和散裂行为

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
lei liu, Jingfu Shi, Di Song, Changqing Miao
{"title":"机器学习分子动力学模拟PPTA晶体的冲击响应和散裂行为","authors":"lei liu, Jingfu Shi, Di Song, Changqing Miao","doi":"10.1039/d5cp00251f","DOIUrl":null,"url":null,"abstract":"The shock response of poly(p-phenylene terephthalamide) (PPTA) crystals is investigated using molecular dynamics simulations combined with a machine learning potential. Considering the anisotropy of PPTA crystals, the directions dominated by hydrogen bonding and van der Waals forces are examined, respectively. First, a machine learning potential capable of simulating the shock behavior of PPTA is developed and validated. The potential is demonstrated to achieve excellent accuracy, showing high consistency with density functional theory results. Based on the established machine learning potential, multiscale shock techniques are employed to simulate shock compression at various particle velocities. The Hugoniot curves of PPTA crystals reveal three distinct stages of shock response: elastic, plastic, and cross-linking. With increasing particle velocity, the b axis of PPTA crystals is found to exhibit a greater tendency for plastic deformation. Plasticity along the a axis is characterized by the planarization of adjacent benzene rings within the chains, while along the b axis, it involves the breaking and reformation of hydrogen bonds. The spatiotemporal evolution of thermodynamic parameters and spallation during shock wave propagation is further uncovered through non-equilibrium molecular dynamics simulations. The shock response mechanisms of PPTA fibers are elucidated, providing a foundation for subsequent simulations and their application in impact protection structures.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"30 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning molecular dynamics simulations of Shock Response and Spallation Behavior in PPTA Crystals\",\"authors\":\"lei liu, Jingfu Shi, Di Song, Changqing Miao\",\"doi\":\"10.1039/d5cp00251f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The shock response of poly(p-phenylene terephthalamide) (PPTA) crystals is investigated using molecular dynamics simulations combined with a machine learning potential. Considering the anisotropy of PPTA crystals, the directions dominated by hydrogen bonding and van der Waals forces are examined, respectively. First, a machine learning potential capable of simulating the shock behavior of PPTA is developed and validated. The potential is demonstrated to achieve excellent accuracy, showing high consistency with density functional theory results. Based on the established machine learning potential, multiscale shock techniques are employed to simulate shock compression at various particle velocities. The Hugoniot curves of PPTA crystals reveal three distinct stages of shock response: elastic, plastic, and cross-linking. With increasing particle velocity, the b axis of PPTA crystals is found to exhibit a greater tendency for plastic deformation. Plasticity along the a axis is characterized by the planarization of adjacent benzene rings within the chains, while along the b axis, it involves the breaking and reformation of hydrogen bonds. The spatiotemporal evolution of thermodynamic parameters and spallation during shock wave propagation is further uncovered through non-equilibrium molecular dynamics simulations. The shock response mechanisms of PPTA fibers are elucidated, providing a foundation for subsequent simulations and their application in impact protection structures.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cp00251f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp00251f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用分子动力学模拟结合机器学习潜力研究了聚对苯对苯二甲酸(PPTA)晶体的冲击响应。考虑到PPTA晶体的各向异性,分别考察了氢键和范德华力主导的方向。首先,开发并验证了一种能够模拟PPTA冲击行为的机器学习潜力。结果表明,该方法具有较高的精度,与密度泛函理论结果具有较高的一致性。基于已建立的机器学习潜力,采用多尺度激波技术模拟不同粒子速度下的激波压缩。PPTA晶体的Hugoniot曲线揭示了三个不同的冲击响应阶段:弹性、塑性和交联。随着粒子速度的增加,PPTA晶体的b轴呈现出更大的塑性变形趋势。a轴的塑性表现为链内相邻苯环的平面化,而b轴的塑性表现为氢键的断裂和重组。通过非平衡分子动力学模拟,进一步揭示了激波传播过程中热力学参数和散裂的时空演化。阐明了PPTA纤维的冲击响应机理,为后续的仿真及在冲击防护结构中的应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine-Learning molecular dynamics simulations of Shock Response and Spallation Behavior in PPTA Crystals
The shock response of poly(p-phenylene terephthalamide) (PPTA) crystals is investigated using molecular dynamics simulations combined with a machine learning potential. Considering the anisotropy of PPTA crystals, the directions dominated by hydrogen bonding and van der Waals forces are examined, respectively. First, a machine learning potential capable of simulating the shock behavior of PPTA is developed and validated. The potential is demonstrated to achieve excellent accuracy, showing high consistency with density functional theory results. Based on the established machine learning potential, multiscale shock techniques are employed to simulate shock compression at various particle velocities. The Hugoniot curves of PPTA crystals reveal three distinct stages of shock response: elastic, plastic, and cross-linking. With increasing particle velocity, the b axis of PPTA crystals is found to exhibit a greater tendency for plastic deformation. Plasticity along the a axis is characterized by the planarization of adjacent benzene rings within the chains, while along the b axis, it involves the breaking and reformation of hydrogen bonds. The spatiotemporal evolution of thermodynamic parameters and spallation during shock wave propagation is further uncovered through non-equilibrium molecular dynamics simulations. The shock response mechanisms of PPTA fibers are elucidated, providing a foundation for subsequent simulations and their application in impact protection structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信