检测安全api的滥用:系统回顾

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Seyedehzahra Mosavi, Chadni Islam, Muhammad Ali Babar, Sharif Abuadbba, Kristen Moore
{"title":"检测安全api的滥用:系统回顾","authors":"Seyedehzahra Mosavi, Chadni Islam, Muhammad Ali Babar, Sharif Abuadbba, Kristen Moore","doi":"10.1145/3735968","DOIUrl":null,"url":null,"abstract":"Security Application Programming Interfaces (APIs) are crucial for ensuring software security. However, their misuse introduces vulnerabilities, potentially leading to severe data breaches and substantial financial loss. Complex API design, inadequate documentation, and insufficient security training often lead to unintentional misuse by developers. The software security community has devised and evaluated several approaches to detecting security API misuse to help developers and organizations. This study rigorously reviews the literature on detecting misuse of security APIs to gain a comprehensive understanding of this critical domain. Our goal is to identify and analyze security API misuses, the detection approaches developed, and the evaluation methodologies employed along with the open research avenues to advance the state-of-the-art in this area. Employing the systematic literature review (SLR) methodology, we analyzed 69 research papers. Our review has yielded (a) identification of 6 security API types; (b) classification of 30 distinct misuses; (c) categorization of detection techniques into heuristic-based and ML-based approaches; and (d) identification of 10 performance measures and 9 evaluation benchmarks. The review reveals a lack of coverage of detection approaches in several areas. We recommend that future efforts focus on aligning security API development with developers’ needs and advancing standardized evaluation methods for detection technologies.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"20 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Misuse of Security APIs: A Systematic Review\",\"authors\":\"Seyedehzahra Mosavi, Chadni Islam, Muhammad Ali Babar, Sharif Abuadbba, Kristen Moore\",\"doi\":\"10.1145/3735968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security Application Programming Interfaces (APIs) are crucial for ensuring software security. However, their misuse introduces vulnerabilities, potentially leading to severe data breaches and substantial financial loss. Complex API design, inadequate documentation, and insufficient security training often lead to unintentional misuse by developers. The software security community has devised and evaluated several approaches to detecting security API misuse to help developers and organizations. This study rigorously reviews the literature on detecting misuse of security APIs to gain a comprehensive understanding of this critical domain. Our goal is to identify and analyze security API misuses, the detection approaches developed, and the evaluation methodologies employed along with the open research avenues to advance the state-of-the-art in this area. Employing the systematic literature review (SLR) methodology, we analyzed 69 research papers. Our review has yielded (a) identification of 6 security API types; (b) classification of 30 distinct misuses; (c) categorization of detection techniques into heuristic-based and ML-based approaches; and (d) identification of 10 performance measures and 9 evaluation benchmarks. The review reveals a lack of coverage of detection approaches in several areas. We recommend that future efforts focus on aligning security API development with developers’ needs and advancing standardized evaluation methods for detection technologies.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3735968\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3735968","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

安全api (Application Programming interface)是保证软件安全的关键。然而,它们的滥用会带来漏洞,可能导致严重的数据泄露和重大的经济损失。复杂的API设计、不充分的文档和不充分的安全培训常常导致开发人员无意中误用。软件安全社区已经设计并评估了几种检测安全API滥用的方法,以帮助开发人员和组织。本研究严格审查了有关检测安全api滥用的文献,以获得对这一关键领域的全面理解。我们的目标是识别和分析安全API的滥用、开发的检测方法和所采用的评估方法,以及开放的研究途径,以推进该领域的最新技术。采用系统文献回顾(SLR)方法,对69篇研究论文进行分析。我们的审查产生了(a) 6种安全API类型的识别;(b)对30种不同滥用的分类;(c)将检测技术分为基于启发式和基于ml的方法;(d)确定10项绩效指标和9项评价基准。审查结果显示,在若干领域检测方法缺乏覆盖。我们建议未来的工作重点是使安全API开发与开发人员的需求保持一致,并推进检测技术的标准化评估方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Misuse of Security APIs: A Systematic Review
Security Application Programming Interfaces (APIs) are crucial for ensuring software security. However, their misuse introduces vulnerabilities, potentially leading to severe data breaches and substantial financial loss. Complex API design, inadequate documentation, and insufficient security training often lead to unintentional misuse by developers. The software security community has devised and evaluated several approaches to detecting security API misuse to help developers and organizations. This study rigorously reviews the literature on detecting misuse of security APIs to gain a comprehensive understanding of this critical domain. Our goal is to identify and analyze security API misuses, the detection approaches developed, and the evaluation methodologies employed along with the open research avenues to advance the state-of-the-art in this area. Employing the systematic literature review (SLR) methodology, we analyzed 69 research papers. Our review has yielded (a) identification of 6 security API types; (b) classification of 30 distinct misuses; (c) categorization of detection techniques into heuristic-based and ML-based approaches; and (d) identification of 10 performance measures and 9 evaluation benchmarks. The review reveals a lack of coverage of detection approaches in several areas. We recommend that future efforts focus on aligning security API development with developers’ needs and advancing standardized evaluation methods for detection technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信