{"title":"大型语言模型的基本能力和应用:综述","authors":"Jiawei Li, Yang Gao, Yizhe Yang, Yu Bai, Xiaofeng Zhou, Yinghao Li, Huashan Sun, Yuhang Liu, Xingpeng Si, Yuhao Ye, Yixiao Wu, Yiguan Lin, Bin Xu, Bowen Ren, Chong Feng, Heyan Huang","doi":"10.1145/3735632","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) have demonstrated remarkable effectiveness across various domain-specific applications. However, which fundamental capabilities most contribute to their success in different domains remains unclear. This uncertainty complicates LLM evaluation, as existing benchmark-based assessments often fail to capture their real-world performance, where the required capabilities may differ from those measured in the benchmarks. In this survey, we provide a systematic introduction to LLMs’ fundamental capabilities, encompassing their definitions, formation mechanisms, and practical applications. We further explore the relationships among these capabilities and discuss how they collectively support complex problem-solving in domain-specific applications. Building on this foundation, we review recent advances in LLM-driven applications across nine specific domains: medicine, law, computational biology, finance, social sciences and psychology, computer programming and software engineering, robots and agents, AI for disciplines, and creative work. We analyze how specific capabilities are leveraged for each domain to address unique requirements. This perspective enables us to establish connections between these capabilities and domain requirements, and to evaluate the varying importance of different capabilities across different domains. Based on these insights, we propose evaluation strategies tailored to the essential capabilities required in each domain, offering practical guidance for selecting suitable backbone LLMs in real-world applications.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"130 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental Capabilities and Applications of Large Language Models: A Survey\",\"authors\":\"Jiawei Li, Yang Gao, Yizhe Yang, Yu Bai, Xiaofeng Zhou, Yinghao Li, Huashan Sun, Yuhang Liu, Xingpeng Si, Yuhao Ye, Yixiao Wu, Yiguan Lin, Bin Xu, Bowen Ren, Chong Feng, Heyan Huang\",\"doi\":\"10.1145/3735632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models (LLMs) have demonstrated remarkable effectiveness across various domain-specific applications. However, which fundamental capabilities most contribute to their success in different domains remains unclear. This uncertainty complicates LLM evaluation, as existing benchmark-based assessments often fail to capture their real-world performance, where the required capabilities may differ from those measured in the benchmarks. In this survey, we provide a systematic introduction to LLMs’ fundamental capabilities, encompassing their definitions, formation mechanisms, and practical applications. We further explore the relationships among these capabilities and discuss how they collectively support complex problem-solving in domain-specific applications. Building on this foundation, we review recent advances in LLM-driven applications across nine specific domains: medicine, law, computational biology, finance, social sciences and psychology, computer programming and software engineering, robots and agents, AI for disciplines, and creative work. We analyze how specific capabilities are leveraged for each domain to address unique requirements. This perspective enables us to establish connections between these capabilities and domain requirements, and to evaluate the varying importance of different capabilities across different domains. Based on these insights, we propose evaluation strategies tailored to the essential capabilities required in each domain, offering practical guidance for selecting suitable backbone LLMs in real-world applications.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3735632\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3735632","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Fundamental Capabilities and Applications of Large Language Models: A Survey
Large Language Models (LLMs) have demonstrated remarkable effectiveness across various domain-specific applications. However, which fundamental capabilities most contribute to their success in different domains remains unclear. This uncertainty complicates LLM evaluation, as existing benchmark-based assessments often fail to capture their real-world performance, where the required capabilities may differ from those measured in the benchmarks. In this survey, we provide a systematic introduction to LLMs’ fundamental capabilities, encompassing their definitions, formation mechanisms, and practical applications. We further explore the relationships among these capabilities and discuss how they collectively support complex problem-solving in domain-specific applications. Building on this foundation, we review recent advances in LLM-driven applications across nine specific domains: medicine, law, computational biology, finance, social sciences and psychology, computer programming and software engineering, robots and agents, AI for disciplines, and creative work. We analyze how specific capabilities are leveraged for each domain to address unique requirements. This perspective enables us to establish connections between these capabilities and domain requirements, and to evaluate the varying importance of different capabilities across different domains. Based on these insights, we propose evaluation strategies tailored to the essential capabilities required in each domain, offering practical guidance for selecting suitable backbone LLMs in real-world applications.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.