{"title":"基于自适应硬度负抽样和自适应图多重卷积的代谢-疾病关联预测。","authors":"Binglu Hu,Ying Su,Xuecong Tian,Chen Chen,Cheng Chen,Xiaoyi Lv","doi":"10.1021/acs.jcim.5c00694","DOIUrl":null,"url":null,"abstract":"Metabolites are small molecules produced during organism metabolism, with their abnormal concentrations closely linked to the onset and progression of various diseases. Accurate prediction of metabolite-disease associations is crucial for early diagnosis, mechanistic exploration, and treatment optimization. However, existing algorithms often overlook the integration of node features and neglect the impact of different hop domains on nodes in the processing of heterogeneous graphs. Furthermore, current methods solely rely on random sampling for selecting negative samples without considering their reliability, thereby compromising model stability. A novel metabolite-disease association prediction model, GMAMDA, is proposed to address these challenges. GMAMDA integrates adaptive hardness negative sampling, adaptive graph multiple convolution techniques, and a multiheterogeneous graph fusion strategy to forecast potential metabolite-disease associations. Initially, by computing multisource similarity information for metabolites and diseases, multiple heterogeneous graph networks are established for metabolite-disease association networks. Subsequently, the adaptive graph's multiconvolution mechanism is employed to generate feature-rich node representations across various heterogeneous graphs by dynamically leveraging information from different hop neighborhoods. The model then utilizes an adaptive hardness negative sampling approach based on principal component analysis to select negative samples with the highest information content for training, enabling the prediction of potential associations between new metabolites and diseases. Experimental findings demonstrate that GMAMDA outperforms state-of-the-art methods across various evaluation metrics, including AUC (0.9962 ± 0.0014), AUPR (0.9967 ± 0.0009), and accuracy (0.9733 ± 0.0042). Case studies focusing on Alzheimer's disease and kidney disease further validate GMAMDA's clinical potential in predicting metabolite markers.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"54 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GMAMDA: Predicting Metabolite-Disease Associations Based on Adaptive Hardness Negative Sampling and Adaptive Graph Multiple Convolution.\",\"authors\":\"Binglu Hu,Ying Su,Xuecong Tian,Chen Chen,Cheng Chen,Xiaoyi Lv\",\"doi\":\"10.1021/acs.jcim.5c00694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metabolites are small molecules produced during organism metabolism, with their abnormal concentrations closely linked to the onset and progression of various diseases. Accurate prediction of metabolite-disease associations is crucial for early diagnosis, mechanistic exploration, and treatment optimization. However, existing algorithms often overlook the integration of node features and neglect the impact of different hop domains on nodes in the processing of heterogeneous graphs. Furthermore, current methods solely rely on random sampling for selecting negative samples without considering their reliability, thereby compromising model stability. A novel metabolite-disease association prediction model, GMAMDA, is proposed to address these challenges. GMAMDA integrates adaptive hardness negative sampling, adaptive graph multiple convolution techniques, and a multiheterogeneous graph fusion strategy to forecast potential metabolite-disease associations. Initially, by computing multisource similarity information for metabolites and diseases, multiple heterogeneous graph networks are established for metabolite-disease association networks. Subsequently, the adaptive graph's multiconvolution mechanism is employed to generate feature-rich node representations across various heterogeneous graphs by dynamically leveraging information from different hop neighborhoods. The model then utilizes an adaptive hardness negative sampling approach based on principal component analysis to select negative samples with the highest information content for training, enabling the prediction of potential associations between new metabolites and diseases. Experimental findings demonstrate that GMAMDA outperforms state-of-the-art methods across various evaluation metrics, including AUC (0.9962 ± 0.0014), AUPR (0.9967 ± 0.0009), and accuracy (0.9733 ± 0.0042). Case studies focusing on Alzheimer's disease and kidney disease further validate GMAMDA's clinical potential in predicting metabolite markers.\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.5c00694\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00694","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
GMAMDA: Predicting Metabolite-Disease Associations Based on Adaptive Hardness Negative Sampling and Adaptive Graph Multiple Convolution.
Metabolites are small molecules produced during organism metabolism, with their abnormal concentrations closely linked to the onset and progression of various diseases. Accurate prediction of metabolite-disease associations is crucial for early diagnosis, mechanistic exploration, and treatment optimization. However, existing algorithms often overlook the integration of node features and neglect the impact of different hop domains on nodes in the processing of heterogeneous graphs. Furthermore, current methods solely rely on random sampling for selecting negative samples without considering their reliability, thereby compromising model stability. A novel metabolite-disease association prediction model, GMAMDA, is proposed to address these challenges. GMAMDA integrates adaptive hardness negative sampling, adaptive graph multiple convolution techniques, and a multiheterogeneous graph fusion strategy to forecast potential metabolite-disease associations. Initially, by computing multisource similarity information for metabolites and diseases, multiple heterogeneous graph networks are established for metabolite-disease association networks. Subsequently, the adaptive graph's multiconvolution mechanism is employed to generate feature-rich node representations across various heterogeneous graphs by dynamically leveraging information from different hop neighborhoods. The model then utilizes an adaptive hardness negative sampling approach based on principal component analysis to select negative samples with the highest information content for training, enabling the prediction of potential associations between new metabolites and diseases. Experimental findings demonstrate that GMAMDA outperforms state-of-the-art methods across various evaluation metrics, including AUC (0.9962 ± 0.0014), AUPR (0.9967 ± 0.0009), and accuracy (0.9733 ± 0.0042). Case studies focusing on Alzheimer's disease and kidney disease further validate GMAMDA's clinical potential in predicting metabolite markers.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.