{"title":"探索虚拟现实在大规模伤亡事件应急响应准备中的作用。","authors":"Alena Lochmannová","doi":"10.1186/s13584-025-00681-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The increasing complexity of mass casualty incidents (MCIs) necessitates highly effective training for emergency responders. Traditional training methods, while effective in teaching core skills, often fail to replicate the dynamic, high-pressure environments responders face in real-world crises. Virtual reality (VR) offers a novel approach to emergency training, providing an immersive, controlled setting that can simulate real-life scenarios. This study explores the effectiveness of VR in training paramedic students for MCIs and compares the outcomes to those from conventional training methods.</p><p><strong>Methods: </strong>A comparative study was conducted with 37 paramedic students who underwent either VR-based training or conventional training using mannequins and real-world equipment. The VR application simulated a mass casualty car accident, focusing on triage and patient management. Both groups were assessed based on their performance in key areas, including the accuracy of situational reporting (METHANE), patient triage, heart rate monitoring, and perceived demand using the NASA Task Load Index (NASA-TLX).</p><p><strong>Results: </strong>The VR group demonstrated significantly lower mental demand (p < 0.001) and frustration levels (p = 0.021) compared to traditional training. However, task completion times were slower in the VR setting (p < 0.001), likely due to the interface's unfamiliarity. Accuracy in situational reporting was higher in VR (p = 0.002), while heart rate monitoring did not reveal a significant difference between the groups (p = 0.516). Although VR did not reduce temporal demand (p = 0.057), it showed potential for improving focus and precision in training. Error rates in triage were similar across both training methods (p = 0.882), indicating comparable performance levels in patient classification.</p><p><strong>Conclusions: </strong>VR presents a promising tool for training emergency responders, particularly in situations that require rapid upskilling, such as crises or wars. The ability to simulate realistic, high-pressure scenarios in a controlled environment can enhance both cognitive and emotional preparedness. Further research is necessary to optimize VR systems and interfaces, making them more efficient for real-time decision-making. As VR technology advances, it holds potential as a key component in future emergency preparedness strategies.</p>","PeriodicalId":46694,"journal":{"name":"Israel Journal of Health Policy Research","volume":"14 1","pages":"22"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11984235/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the role of virtual reality in preparing emergency responders for mass casualty incidents.\",\"authors\":\"Alena Lochmannová\",\"doi\":\"10.1186/s13584-025-00681-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The increasing complexity of mass casualty incidents (MCIs) necessitates highly effective training for emergency responders. Traditional training methods, while effective in teaching core skills, often fail to replicate the dynamic, high-pressure environments responders face in real-world crises. Virtual reality (VR) offers a novel approach to emergency training, providing an immersive, controlled setting that can simulate real-life scenarios. This study explores the effectiveness of VR in training paramedic students for MCIs and compares the outcomes to those from conventional training methods.</p><p><strong>Methods: </strong>A comparative study was conducted with 37 paramedic students who underwent either VR-based training or conventional training using mannequins and real-world equipment. The VR application simulated a mass casualty car accident, focusing on triage and patient management. Both groups were assessed based on their performance in key areas, including the accuracy of situational reporting (METHANE), patient triage, heart rate monitoring, and perceived demand using the NASA Task Load Index (NASA-TLX).</p><p><strong>Results: </strong>The VR group demonstrated significantly lower mental demand (p < 0.001) and frustration levels (p = 0.021) compared to traditional training. However, task completion times were slower in the VR setting (p < 0.001), likely due to the interface's unfamiliarity. Accuracy in situational reporting was higher in VR (p = 0.002), while heart rate monitoring did not reveal a significant difference between the groups (p = 0.516). Although VR did not reduce temporal demand (p = 0.057), it showed potential for improving focus and precision in training. Error rates in triage were similar across both training methods (p = 0.882), indicating comparable performance levels in patient classification.</p><p><strong>Conclusions: </strong>VR presents a promising tool for training emergency responders, particularly in situations that require rapid upskilling, such as crises or wars. The ability to simulate realistic, high-pressure scenarios in a controlled environment can enhance both cognitive and emotional preparedness. Further research is necessary to optimize VR systems and interfaces, making them more efficient for real-time decision-making. As VR technology advances, it holds potential as a key component in future emergency preparedness strategies.</p>\",\"PeriodicalId\":46694,\"journal\":{\"name\":\"Israel Journal of Health Policy Research\",\"volume\":\"14 1\",\"pages\":\"22\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11984235/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Health Policy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13584-025-00681-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Health Policy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13584-025-00681-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
Exploring the role of virtual reality in preparing emergency responders for mass casualty incidents.
Background: The increasing complexity of mass casualty incidents (MCIs) necessitates highly effective training for emergency responders. Traditional training methods, while effective in teaching core skills, often fail to replicate the dynamic, high-pressure environments responders face in real-world crises. Virtual reality (VR) offers a novel approach to emergency training, providing an immersive, controlled setting that can simulate real-life scenarios. This study explores the effectiveness of VR in training paramedic students for MCIs and compares the outcomes to those from conventional training methods.
Methods: A comparative study was conducted with 37 paramedic students who underwent either VR-based training or conventional training using mannequins and real-world equipment. The VR application simulated a mass casualty car accident, focusing on triage and patient management. Both groups were assessed based on their performance in key areas, including the accuracy of situational reporting (METHANE), patient triage, heart rate monitoring, and perceived demand using the NASA Task Load Index (NASA-TLX).
Results: The VR group demonstrated significantly lower mental demand (p < 0.001) and frustration levels (p = 0.021) compared to traditional training. However, task completion times were slower in the VR setting (p < 0.001), likely due to the interface's unfamiliarity. Accuracy in situational reporting was higher in VR (p = 0.002), while heart rate monitoring did not reveal a significant difference between the groups (p = 0.516). Although VR did not reduce temporal demand (p = 0.057), it showed potential for improving focus and precision in training. Error rates in triage were similar across both training methods (p = 0.882), indicating comparable performance levels in patient classification.
Conclusions: VR presents a promising tool for training emergency responders, particularly in situations that require rapid upskilling, such as crises or wars. The ability to simulate realistic, high-pressure scenarios in a controlled environment can enhance both cognitive and emotional preparedness. Further research is necessary to optimize VR systems and interfaces, making them more efficient for real-time decision-making. As VR technology advances, it holds potential as a key component in future emergency preparedness strategies.