在医疗保健领域采用负责任的人工智能,必须实现多样性和公平性。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-04-16 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1577529
Denise E Hilling, Imane Ihaddouchen, Stefan Buijsman, Reggie Townsend, Diederik Gommers, Michel E van Genderen
{"title":"在医疗保健领域采用负责任的人工智能,必须实现多样性和公平性。","authors":"Denise E Hilling, Imane Ihaddouchen, Stefan Buijsman, Reggie Townsend, Diederik Gommers, Michel E van Genderen","doi":"10.3389/frai.2025.1577529","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) in healthcare holds transformative potential but faces critical challenges in ethical accountability and systemic inequities. Biases in AI models, such as lower diagnosis rates for Black women or gender stereotyping in Large Language Models, highlight the urgent need to address historical and structural inequalities in data and development processes. Disparities in clinical trials and datasets, often skewed toward high-income, English-speaking regions, amplify these issues. Moreover, the underrepresentation of marginalized groups among AI developers and researchers exacerbates these challenges. To ensure equitable AI, diverse data collection, federated data-sharing frameworks, and bias-correction techniques are essential. Structural initiatives, such as fairness audits, transparent AI model development processes, and early registration of clinical AI models, alongside inclusive global collaborations like TRAIN-Europe and CHAI, can drive responsible AI adoption. Prioritizing diversity in datasets and among developers and researchers, as well as implementing transparent governance will foster AI systems that uphold ethical principles and deliver equitable healthcare outcomes globally.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1577529"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040885/pdf/","citationCount":"0","resultStr":"{\"title\":\"The imperative of diversity and equity for the adoption of responsible AI in healthcare.\",\"authors\":\"Denise E Hilling, Imane Ihaddouchen, Stefan Buijsman, Reggie Townsend, Diederik Gommers, Michel E van Genderen\",\"doi\":\"10.3389/frai.2025.1577529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial Intelligence (AI) in healthcare holds transformative potential but faces critical challenges in ethical accountability and systemic inequities. Biases in AI models, such as lower diagnosis rates for Black women or gender stereotyping in Large Language Models, highlight the urgent need to address historical and structural inequalities in data and development processes. Disparities in clinical trials and datasets, often skewed toward high-income, English-speaking regions, amplify these issues. Moreover, the underrepresentation of marginalized groups among AI developers and researchers exacerbates these challenges. To ensure equitable AI, diverse data collection, federated data-sharing frameworks, and bias-correction techniques are essential. Structural initiatives, such as fairness audits, transparent AI model development processes, and early registration of clinical AI models, alongside inclusive global collaborations like TRAIN-Europe and CHAI, can drive responsible AI adoption. Prioritizing diversity in datasets and among developers and researchers, as well as implementing transparent governance will foster AI systems that uphold ethical principles and deliver equitable healthcare outcomes globally.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"8 \",\"pages\":\"1577529\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040885/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2025.1577529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1577529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

医疗保健领域的人工智能(AI)具有变革潜力,但在道德问责制和系统性不平等方面面临严峻挑战。人工智能模型中的偏见,如黑人妇女的诊断率较低或大型语言模型中的性别刻板印象,突显了迫切需要解决数据和发展过程中的历史和结构性不平等问题。临床试验和数据集的差异往往向高收入、讲英语的地区倾斜,放大了这些问题。此外,人工智能开发人员和研究人员中边缘化群体的代表性不足加剧了这些挑战。为了确保公平的人工智能,多样化的数据收集、联合数据共享框架和偏见纠正技术至关重要。公平审计、透明的人工智能模型开发过程、临床人工智能模型的早期注册等结构性举措,以及TRAIN-Europe和CHAI等包容性的全球合作,可以推动负责任的人工智能采用。优先考虑数据集、开发人员和研究人员之间的多样性,以及实施透明的治理,将促进人工智能系统维护道德原则,并在全球范围内提供公平的医疗保健结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The imperative of diversity and equity for the adoption of responsible AI in healthcare.

Artificial Intelligence (AI) in healthcare holds transformative potential but faces critical challenges in ethical accountability and systemic inequities. Biases in AI models, such as lower diagnosis rates for Black women or gender stereotyping in Large Language Models, highlight the urgent need to address historical and structural inequalities in data and development processes. Disparities in clinical trials and datasets, often skewed toward high-income, English-speaking regions, amplify these issues. Moreover, the underrepresentation of marginalized groups among AI developers and researchers exacerbates these challenges. To ensure equitable AI, diverse data collection, federated data-sharing frameworks, and bias-correction techniques are essential. Structural initiatives, such as fairness audits, transparent AI model development processes, and early registration of clinical AI models, alongside inclusive global collaborations like TRAIN-Europe and CHAI, can drive responsible AI adoption. Prioritizing diversity in datasets and among developers and researchers, as well as implementing transparent governance will foster AI systems that uphold ethical principles and deliver equitable healthcare outcomes globally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信