{"title":"阿伐替尼靶向抑制PDGFRA,显著增强lenvatinib治疗肝癌的体内外疗效:临床意义。","authors":"Bixing Zhao, Yang Zhou, Niangmei Cheng, Xiaoyuan Zheng, Geng Chen, Xin Qi, Xiangzhi Zhang, Fei Wang, Qiuyu Zhuang, Yehuda G Assaraf, Xiaolong Liu, Yingchao Wang, Yongyi Zeng","doi":"10.1186/s13046-025-03386-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lenvatinib, a tyrosine kinase receptor inhibitor, has emerged as a frontline therapeutic strategy for the management of advanced hepatocellular carcinoma (HCC). However, the modest response rate observed with lenvatinib and the rapid emergence of chemoresistance highlight the urgent need to elucidate the underlying molecular mechanisms. Herein we aimed at identifying the molecular mechanisms underlying lenvatinib resistance in HCC and investigated the efficacy of targeted combination therapies to surmount this chemoresistance.</p><p><strong>Methods: </strong>We utilized CRISPR/Cas9 gene knockout screening combined with transcriptome sequencing of lenvatinib-resistant HCC cell lines to identify resistance-associated genes. PDGFRA overexpression was validated in human lenvatinib-resistant HCC cells. We further corroborated the in vitro and in vivo role of PDGFRA in lenvatinib resistance using a PDGFRA inhibitor, avapritinib, employing a mouse orthotopic HCC model, patient-derived organoids (PDO), and patient-derived xenografts (PDX). The association between PDGFRA expression and patient prognosis was also assessed. Mechanistic studies were conducted to elucidate the signaling pathways contributing to lenvatinib resistance mediated by PDGFRA.</p><p><strong>Results: </strong>PDGFRA overexpression was identified as a key determinant of lenvatinib-resistance in HCC cells. Consistently, ectopic PGDGFRA overexpression conferred lenvatinib resistance upon HCC cells. Treatment with the PDGFRA inhibitor avapritinib sensitized HCC cells to lenvatinib in mouse orthotopic HCC, PDO, and PDX models. Increased PDGFRA expression was correlated with poor prognosis in HCC patients. Mechanistic studies revealed that lenvatinib treatment or PDGFRA overexpression promoted HCC resistance through the PTEN/AKT/GSK-3β/β-catenin signaling pathway.</p><p><strong>Conclusions: </strong>Our findings demonstrate that PDGFRA overexpression mediates lenvatinib resistance in HCC and that targeting PDGFRA with avapritinib, surmounts this resistance. Furthermore, the PTEN/AKT/GSK-3β/β-catenin pathway was implicated in lenvatinib resistance, providing a potential therapeutic strategy for HCC patients displaying lenvatinib resistance. Further clinical studies are warranted to validate these findings and to explore the clinical application of PDGFRA-targeted therapies in HCC treatment.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"139"},"PeriodicalIF":11.4000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057143/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeted inhibition of PDGFRA with avapritinib, markedly enhances lenvatinib efficacy in hepatocellular carcinoma in vitro and in vivo: clinical implications.\",\"authors\":\"Bixing Zhao, Yang Zhou, Niangmei Cheng, Xiaoyuan Zheng, Geng Chen, Xin Qi, Xiangzhi Zhang, Fei Wang, Qiuyu Zhuang, Yehuda G Assaraf, Xiaolong Liu, Yingchao Wang, Yongyi Zeng\",\"doi\":\"10.1186/s13046-025-03386-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lenvatinib, a tyrosine kinase receptor inhibitor, has emerged as a frontline therapeutic strategy for the management of advanced hepatocellular carcinoma (HCC). However, the modest response rate observed with lenvatinib and the rapid emergence of chemoresistance highlight the urgent need to elucidate the underlying molecular mechanisms. Herein we aimed at identifying the molecular mechanisms underlying lenvatinib resistance in HCC and investigated the efficacy of targeted combination therapies to surmount this chemoresistance.</p><p><strong>Methods: </strong>We utilized CRISPR/Cas9 gene knockout screening combined with transcriptome sequencing of lenvatinib-resistant HCC cell lines to identify resistance-associated genes. PDGFRA overexpression was validated in human lenvatinib-resistant HCC cells. We further corroborated the in vitro and in vivo role of PDGFRA in lenvatinib resistance using a PDGFRA inhibitor, avapritinib, employing a mouse orthotopic HCC model, patient-derived organoids (PDO), and patient-derived xenografts (PDX). The association between PDGFRA expression and patient prognosis was also assessed. Mechanistic studies were conducted to elucidate the signaling pathways contributing to lenvatinib resistance mediated by PDGFRA.</p><p><strong>Results: </strong>PDGFRA overexpression was identified as a key determinant of lenvatinib-resistance in HCC cells. Consistently, ectopic PGDGFRA overexpression conferred lenvatinib resistance upon HCC cells. Treatment with the PDGFRA inhibitor avapritinib sensitized HCC cells to lenvatinib in mouse orthotopic HCC, PDO, and PDX models. Increased PDGFRA expression was correlated with poor prognosis in HCC patients. Mechanistic studies revealed that lenvatinib treatment or PDGFRA overexpression promoted HCC resistance through the PTEN/AKT/GSK-3β/β-catenin signaling pathway.</p><p><strong>Conclusions: </strong>Our findings demonstrate that PDGFRA overexpression mediates lenvatinib resistance in HCC and that targeting PDGFRA with avapritinib, surmounts this resistance. Furthermore, the PTEN/AKT/GSK-3β/β-catenin pathway was implicated in lenvatinib resistance, providing a potential therapeutic strategy for HCC patients displaying lenvatinib resistance. Further clinical studies are warranted to validate these findings and to explore the clinical application of PDGFRA-targeted therapies in HCC treatment.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"44 1\",\"pages\":\"139\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057143/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-025-03386-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03386-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Targeted inhibition of PDGFRA with avapritinib, markedly enhances lenvatinib efficacy in hepatocellular carcinoma in vitro and in vivo: clinical implications.
Background: Lenvatinib, a tyrosine kinase receptor inhibitor, has emerged as a frontline therapeutic strategy for the management of advanced hepatocellular carcinoma (HCC). However, the modest response rate observed with lenvatinib and the rapid emergence of chemoresistance highlight the urgent need to elucidate the underlying molecular mechanisms. Herein we aimed at identifying the molecular mechanisms underlying lenvatinib resistance in HCC and investigated the efficacy of targeted combination therapies to surmount this chemoresistance.
Methods: We utilized CRISPR/Cas9 gene knockout screening combined with transcriptome sequencing of lenvatinib-resistant HCC cell lines to identify resistance-associated genes. PDGFRA overexpression was validated in human lenvatinib-resistant HCC cells. We further corroborated the in vitro and in vivo role of PDGFRA in lenvatinib resistance using a PDGFRA inhibitor, avapritinib, employing a mouse orthotopic HCC model, patient-derived organoids (PDO), and patient-derived xenografts (PDX). The association between PDGFRA expression and patient prognosis was also assessed. Mechanistic studies were conducted to elucidate the signaling pathways contributing to lenvatinib resistance mediated by PDGFRA.
Results: PDGFRA overexpression was identified as a key determinant of lenvatinib-resistance in HCC cells. Consistently, ectopic PGDGFRA overexpression conferred lenvatinib resistance upon HCC cells. Treatment with the PDGFRA inhibitor avapritinib sensitized HCC cells to lenvatinib in mouse orthotopic HCC, PDO, and PDX models. Increased PDGFRA expression was correlated with poor prognosis in HCC patients. Mechanistic studies revealed that lenvatinib treatment or PDGFRA overexpression promoted HCC resistance through the PTEN/AKT/GSK-3β/β-catenin signaling pathway.
Conclusions: Our findings demonstrate that PDGFRA overexpression mediates lenvatinib resistance in HCC and that targeting PDGFRA with avapritinib, surmounts this resistance. Furthermore, the PTEN/AKT/GSK-3β/β-catenin pathway was implicated in lenvatinib resistance, providing a potential therapeutic strategy for HCC patients displaying lenvatinib resistance. Further clinical studies are warranted to validate these findings and to explore the clinical application of PDGFRA-targeted therapies in HCC treatment.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.