使用物理信息2D和2.5D生成神经网络模型模拟扫描仪和算法特定的3D CT噪声纹理。

Hao Gong, Thomas M Huber, Timothy Winfree, Scott S Hsieh, Lifeng Yu, Shuai Leng, Cynthia H McCollough
{"title":"使用物理信息2D和2.5D生成神经网络模型模拟扫描仪和算法特定的3D CT噪声纹理。","authors":"Hao Gong, Thomas M Huber, Timothy Winfree, Scott S Hsieh, Lifeng Yu, Shuai Leng, Cynthia H McCollough","doi":"10.1117/12.3047909","DOIUrl":null,"url":null,"abstract":"<p><p>Low-dose CT simulation is needed to assess reconstruction/denoising techniques and optimize dose. Projection-domain noise-insertion methods require manufacturers' proprietary tools. Image-domain noise-insertion methods face various challenges that affect generalizability, and few have been systematically validated for 3D noise synthesis. To improve generalizability, we presented a <b>p</b>hysics-informed model-based gener<b>a</b>tive neura<b>l</b> network for simulating scann<b>e</b>r- and algorithm-specific low-dose C<b>T e</b>xams (PALETTE). PALETTE included a noise-prior-generation process, a Noise2Noisier sub-network, and a noise-texture-synthesis sub-network. Custom regularization terms were developed to enforce 3D noise texture quality. Using PALETTE, one 2D and two 2.5D models (denoted as 2.5D <i>N-N</i> and <i>N-1</i>) were developed to conduct 2D and effective 3D noise modeling, respectively (input/output images: 2D - 1/1, 2.5D <i>N-N</i> - 3/3, 2.5D <i>N-1</i> - 5/1). These models were trained and tested with an open-access abdominal CT dataset, including 20 testing cases reconstructed with two kernels and various field-of-view. In visual inspection, the 2D and 2.5D <i>N-N</i> models generated realistic local and global noise texture, while 2.5D <i>N-1</i> showed more perceptual difference using the sharper kernel and coronal reformat. In quantitative evaluation, local noise level was compared using mean-absolute-percent-difference (MAPD), and global spectral similarity was assessed using spectral correlation mapper (SCM) and spectral angle mapper (SAM). The 2D model provided equivalent or relatively better performance than 2.5D models, showing well-matched local noise levels and high spectral similarity compared to the reference (sharper/smoother kernels): MAPD - 2D 1.5%/5.6% (p>0.05), 2.5D <i>N-N</i> 8.5%/7.9% (p<0.05), 2.5D <i>N-1</i> 12.3%/10.9% (p<0.05); mean SCM - 2D 0.97/0.97, 2.5D <i>N-N</i> 0.96/0.97, 2.5D <i>N-1</i> 0.85/0.97; mean SAM - 2D 0.12/0.12, 2.5D <i>N-N</i> 0.14/0.12, 2.5D <i>N-1</i> 0.37/0.12. With tripled model width, the 2.5D <i>N-N</i> outperformed <i>N-1</i>. This indicated 2.5D models need more learning capacity to further enhance 3D noise modeling. Using physics-based prior information, PALETTE can provide high-quality low-dose CT simulation to resemble scanner- and algorithm-specific 3D noise characteristics.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13405 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070530/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simulating scanner-and algorithm-specific 3D CT noise texture using physics-informed 2D and 2.5D generative neural network models.\",\"authors\":\"Hao Gong, Thomas M Huber, Timothy Winfree, Scott S Hsieh, Lifeng Yu, Shuai Leng, Cynthia H McCollough\",\"doi\":\"10.1117/12.3047909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low-dose CT simulation is needed to assess reconstruction/denoising techniques and optimize dose. Projection-domain noise-insertion methods require manufacturers' proprietary tools. Image-domain noise-insertion methods face various challenges that affect generalizability, and few have been systematically validated for 3D noise synthesis. To improve generalizability, we presented a <b>p</b>hysics-informed model-based gener<b>a</b>tive neura<b>l</b> network for simulating scann<b>e</b>r- and algorithm-specific low-dose C<b>T e</b>xams (PALETTE). PALETTE included a noise-prior-generation process, a Noise2Noisier sub-network, and a noise-texture-synthesis sub-network. Custom regularization terms were developed to enforce 3D noise texture quality. Using PALETTE, one 2D and two 2.5D models (denoted as 2.5D <i>N-N</i> and <i>N-1</i>) were developed to conduct 2D and effective 3D noise modeling, respectively (input/output images: 2D - 1/1, 2.5D <i>N-N</i> - 3/3, 2.5D <i>N-1</i> - 5/1). These models were trained and tested with an open-access abdominal CT dataset, including 20 testing cases reconstructed with two kernels and various field-of-view. In visual inspection, the 2D and 2.5D <i>N-N</i> models generated realistic local and global noise texture, while 2.5D <i>N-1</i> showed more perceptual difference using the sharper kernel and coronal reformat. In quantitative evaluation, local noise level was compared using mean-absolute-percent-difference (MAPD), and global spectral similarity was assessed using spectral correlation mapper (SCM) and spectral angle mapper (SAM). The 2D model provided equivalent or relatively better performance than 2.5D models, showing well-matched local noise levels and high spectral similarity compared to the reference (sharper/smoother kernels): MAPD - 2D 1.5%/5.6% (p>0.05), 2.5D <i>N-N</i> 8.5%/7.9% (p<0.05), 2.5D <i>N-1</i> 12.3%/10.9% (p<0.05); mean SCM - 2D 0.97/0.97, 2.5D <i>N-N</i> 0.96/0.97, 2.5D <i>N-1</i> 0.85/0.97; mean SAM - 2D 0.12/0.12, 2.5D <i>N-N</i> 0.14/0.12, 2.5D <i>N-1</i> 0.37/0.12. With tripled model width, the 2.5D <i>N-N</i> outperformed <i>N-1</i>. This indicated 2.5D models need more learning capacity to further enhance 3D noise modeling. Using physics-based prior information, PALETTE can provide high-quality low-dose CT simulation to resemble scanner- and algorithm-specific 3D noise characteristics.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"13405 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070530/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3047909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3047909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低剂量CT模拟需要评估重建/去噪技术和优化剂量。投影域噪声插入方法需要制造商的专有工具。图像域噪声插入方法面临着影响其泛化性的各种挑战,很少有方法对三维噪声合成进行系统验证。为了提高通用性,我们提出了一个基于物理信息模型的生成神经网络,用于模拟扫描仪和算法特定的低剂量CT检查(PALETTE)。调色板包括一个噪声先验生成过程、一个Noise2Noisier子网络和一个噪声-纹理合成子网络。开发了自定义正则化术语来增强3D噪声纹理质量。利用PALETTE分别建立了一个2D模型和两个2.5D模型(记为2.5D N-N和N-1),分别进行二维和有效的三维噪声建模(输入/输出图像:2D - 1/1、2.5D N-N - 3/3、2.5D N-1 - 5/1)。这些模型使用开放获取的腹部CT数据集进行训练和测试,其中包括20个用两个核和不同视场重建的测试案例。在视觉检测中,2D和2.5D N-N模型产生了真实的局部和全局噪声纹理,而2.5D N-1模型通过更清晰的核和冠状重构显示出更多的感知差异。在定量评价中,使用平均绝对百分比差(MAPD)比较局部噪声水平,使用光谱相关映射器(SCM)和光谱角映射器(SAM)评估全局光谱相似性。2D模型提供了与2.5D模型相当或相对更好的性能,与参考模型相比,显示出良好的局部噪声水平和高光谱相似性(更清晰/更平滑的内核):MAPD - 2D 1.5%/5.6% (p>0.05), 2.5D N-N 8.5%/7.9% (pN-1 12.3%/10.9% (pN-N 0.96/0.97, 2.5D N-1 0.85/0.97);平均SAM - 2D 0.12/0.12, 2.5D N-N 0.14/0.12, 2.5D N-1 0.37/0.12。随着模型宽度的三倍,2.5D N-N的性能优于N-1。这表明2.5D模型需要更多的学习能力来进一步增强三维噪声建模。利用基于物理的先验信息,PALETTE可以提供高质量的低剂量CT模拟,以模拟扫描仪和算法特定的3D噪声特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulating scanner-and algorithm-specific 3D CT noise texture using physics-informed 2D and 2.5D generative neural network models.

Low-dose CT simulation is needed to assess reconstruction/denoising techniques and optimize dose. Projection-domain noise-insertion methods require manufacturers' proprietary tools. Image-domain noise-insertion methods face various challenges that affect generalizability, and few have been systematically validated for 3D noise synthesis. To improve generalizability, we presented a physics-informed model-based generative neural network for simulating scanner- and algorithm-specific low-dose CT exams (PALETTE). PALETTE included a noise-prior-generation process, a Noise2Noisier sub-network, and a noise-texture-synthesis sub-network. Custom regularization terms were developed to enforce 3D noise texture quality. Using PALETTE, one 2D and two 2.5D models (denoted as 2.5D N-N and N-1) were developed to conduct 2D and effective 3D noise modeling, respectively (input/output images: 2D - 1/1, 2.5D N-N - 3/3, 2.5D N-1 - 5/1). These models were trained and tested with an open-access abdominal CT dataset, including 20 testing cases reconstructed with two kernels and various field-of-view. In visual inspection, the 2D and 2.5D N-N models generated realistic local and global noise texture, while 2.5D N-1 showed more perceptual difference using the sharper kernel and coronal reformat. In quantitative evaluation, local noise level was compared using mean-absolute-percent-difference (MAPD), and global spectral similarity was assessed using spectral correlation mapper (SCM) and spectral angle mapper (SAM). The 2D model provided equivalent or relatively better performance than 2.5D models, showing well-matched local noise levels and high spectral similarity compared to the reference (sharper/smoother kernels): MAPD - 2D 1.5%/5.6% (p>0.05), 2.5D N-N 8.5%/7.9% (p<0.05), 2.5D N-1 12.3%/10.9% (p<0.05); mean SCM - 2D 0.97/0.97, 2.5D N-N 0.96/0.97, 2.5D N-1 0.85/0.97; mean SAM - 2D 0.12/0.12, 2.5D N-N 0.14/0.12, 2.5D N-1 0.37/0.12. With tripled model width, the 2.5D N-N outperformed N-1. This indicated 2.5D models need more learning capacity to further enhance 3D noise modeling. Using physics-based prior information, PALETTE can provide high-quality low-dose CT simulation to resemble scanner- and algorithm-specific 3D noise characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信