{"title":"一种制备均匀微粒径干粉配方的新方法,包括聚合控制VHH。","authors":"Tatsuru Moritani, Hidekazu Masaki, Ryo Yonehara, Takeru Suzuki, Hidenao Arai, Masayuki Tsuchiya, Naoto Nemoto","doi":"10.3390/antib14020029","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The preparation of antibodies in powder form without changing their physicochemical properties may enable their use in new drug delivery system therapies or non-refrigerated storage. The variable domain of heavy-chain antibodies (VHHs) is more suited for this purpose than that of conventional antibodies because of VHHs' high thermal stability and ability to refold.</p><p><strong>Methods: </strong>In this report, the fine droplet drying (FDD) process was selected as the powderization technique because of its favorable features, such as mild drying conditions and the generation of uniform particle sizes. The aggregation, binding, particle, and in vitro inhalation properties of the prepared VHH powders (VHHps) were evaluated.</p><p><strong>Results: </strong>The amount of aggregated VHHs present in the VHHps depended on the flow temperature during the FDD process, with higher temperatures yielding a higher aggregation ratio. In contrast, no significant difference in binding activity was observed between each VHHp preparation and the native VHHs. However, this process degraded VHHs or inactivated their function, and ultimately, only about 30% of the original VHHs were functional, whereas the remaining VHHs that were not degraded showed little loss of functionality, even after storage at room temperature for more than two years. Analysis of the VHHp samples revealed that the particles were uniformly spherical with a single-micron size. The VHHps showed fine inhalation properties in the inhalation property test.</p><p><strong>Conclusions: </strong>These findings suggest that the FDD process affords various VHH powder formulations, including pharmaceutical formulations.</p>","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":"14 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015861/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Novel Method for Preparing Uniform Micro-Sized Dry Powder Formulations, Including Aggregation-Controlled VHH.\",\"authors\":\"Tatsuru Moritani, Hidekazu Masaki, Ryo Yonehara, Takeru Suzuki, Hidenao Arai, Masayuki Tsuchiya, Naoto Nemoto\",\"doi\":\"10.3390/antib14020029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The preparation of antibodies in powder form without changing their physicochemical properties may enable their use in new drug delivery system therapies or non-refrigerated storage. The variable domain of heavy-chain antibodies (VHHs) is more suited for this purpose than that of conventional antibodies because of VHHs' high thermal stability and ability to refold.</p><p><strong>Methods: </strong>In this report, the fine droplet drying (FDD) process was selected as the powderization technique because of its favorable features, such as mild drying conditions and the generation of uniform particle sizes. The aggregation, binding, particle, and in vitro inhalation properties of the prepared VHH powders (VHHps) were evaluated.</p><p><strong>Results: </strong>The amount of aggregated VHHs present in the VHHps depended on the flow temperature during the FDD process, with higher temperatures yielding a higher aggregation ratio. In contrast, no significant difference in binding activity was observed between each VHHp preparation and the native VHHs. However, this process degraded VHHs or inactivated their function, and ultimately, only about 30% of the original VHHs were functional, whereas the remaining VHHs that were not degraded showed little loss of functionality, even after storage at room temperature for more than two years. Analysis of the VHHp samples revealed that the particles were uniformly spherical with a single-micron size. The VHHps showed fine inhalation properties in the inhalation property test.</p><p><strong>Conclusions: </strong>These findings suggest that the FDD process affords various VHH powder formulations, including pharmaceutical formulations.</p>\",\"PeriodicalId\":8188,\"journal\":{\"name\":\"Antibodies\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibodies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/antib14020029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib14020029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A Novel Method for Preparing Uniform Micro-Sized Dry Powder Formulations, Including Aggregation-Controlled VHH.
Background: The preparation of antibodies in powder form without changing their physicochemical properties may enable their use in new drug delivery system therapies or non-refrigerated storage. The variable domain of heavy-chain antibodies (VHHs) is more suited for this purpose than that of conventional antibodies because of VHHs' high thermal stability and ability to refold.
Methods: In this report, the fine droplet drying (FDD) process was selected as the powderization technique because of its favorable features, such as mild drying conditions and the generation of uniform particle sizes. The aggregation, binding, particle, and in vitro inhalation properties of the prepared VHH powders (VHHps) were evaluated.
Results: The amount of aggregated VHHs present in the VHHps depended on the flow temperature during the FDD process, with higher temperatures yielding a higher aggregation ratio. In contrast, no significant difference in binding activity was observed between each VHHp preparation and the native VHHs. However, this process degraded VHHs or inactivated their function, and ultimately, only about 30% of the original VHHs were functional, whereas the remaining VHHs that were not degraded showed little loss of functionality, even after storage at room temperature for more than two years. Analysis of the VHHp samples revealed that the particles were uniformly spherical with a single-micron size. The VHHps showed fine inhalation properties in the inhalation property test.
Conclusions: These findings suggest that the FDD process affords various VHH powder formulations, including pharmaceutical formulations.
期刊介绍:
Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.