荧光核径迹检测器用于快速和高能单能中子剂量测定的灵敏度分析。

IF 3.2 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Medical physics Pub Date : 2025-04-20 DOI:10.1002/mp.17799
Stefan Schmidt, Jeppe B. Christensen, Benjamin Lutz, Alberto Stabilini, Eduardo G. Yukihara, José Vedelago
{"title":"荧光核径迹检测器用于快速和高能单能中子剂量测定的灵敏度分析。","authors":"Stefan Schmidt,&nbsp;Jeppe B. Christensen,&nbsp;Benjamin Lutz,&nbsp;Alberto Stabilini,&nbsp;Eduardo G. Yukihara,&nbsp;José Vedelago","doi":"10.1002/mp.17799","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>In ion beam radiotherapy, treatment radiation fields are inevitably contaminated with secondary neutrons. The energies of these neutrons can reach several hundreds of MeV. Fluorescent nuclear track detectors (FNTDs) offer a promising solution for dosimetry of fast and high-energy neutrons, particularly given their low linear energy transfer in water (LET) detection threshold.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>This study presents an experimental FNTD sensitivity analysis in six fast mono-energetic neutron fields, comparing the response to poly allyl diglycol carbonate (PADC) neutron detectors, and investigates the feasibility of estimating ambient dose equivalent for neutrons, <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$H^{*}$</annotation>\n </semantics></math>(10). Moreover, it investigates the impact of converter thickness on the detector signal for both fast and high-energy neutrons and analyzes the resulting differences in signal.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>FNTDs and PADCs were exposed to mono-energetic neutron fields with energies of 1.2 MeV, 2.5 MeV, 5 MeV, 6.5 MeV, 14.8 MeV, and 19 MeV and evaluated based on the track density. The <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$H^{*}$</annotation>\n </semantics></math>(10) values for FNTDs were determined by applying energy calibration factors, <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$k(E)$</annotation>\n </semantics></math>, which were determined through Monte Carlo (MC) simulations. The benchmarked MC model is employed to investigate the sensitivity of FNTDs to high-energy neutrons up to 200 MeV for various polyethylene (PE) converter thicknesses and to analyze the detector signal, including the particle type and the recoil proton LET.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The sensitivity values revealed an energy dependence for FNTDs, with variations by a factor of up to 23, whereas PADC detectors showed a smaller variation, ranging from 3 to 12. Accurate <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$H^{*}$</annotation>\n </semantics></math>(10) estimation can be achieved employing MC-derived <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>(</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$k(E)$</annotation>\n </semantics></math> factors, with deviations not exceeding <span></span><math>\n <semantics>\n <mrow>\n <mn>10</mn>\n <mspace></mspace>\n <mo>%</mo>\n </mrow>\n <annotation>$10\\, \\%$</annotation>\n </semantics></math>. The sensitivity values increased almost continuously up to <span></span><math>\n <semantics>\n <mrow>\n <mn>200</mn>\n <mspace></mspace>\n <mi>MeV</mi>\n </mrow>\n <annotation>$200 \\,\\mathrm{MeV}$</annotation>\n </semantics></math> for PE converter thicknesses above <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mspace></mspace>\n <mi>mm</mi>\n </mrow>\n <annotation>$2 \\,\\mathrm{mm}$</annotation>\n </semantics></math>, whereas plateaued for thinner PE converters above 10 MeV to 15 MeV. For neutrons above <span></span><math>\n <semantics>\n <mrow>\n <mn>20</mn>\n <mspace></mspace>\n <mi>MeV</mi>\n </mrow>\n <annotation>$20 \\,\\mathrm{MeV}$</annotation>\n </semantics></math>, the generated fragments are deuterons, tritons and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mn>4</mn>\n </msup>\n <mi>He</mi>\n </mrow>\n <annotation>$^{4}{\\rm He}$</annotation>\n </semantics></math>, which constitutes up to <span></span><math>\n <semantics>\n <mrow>\n <mn>15</mn>\n <mspace></mspace>\n <mo>%</mo>\n </mrow>\n <annotation>$15 \\,\\%$</annotation>\n </semantics></math> or more of the total fluence in a <span></span><math>\n <semantics>\n <mrow>\n <mn>150</mn>\n <mspace></mspace>\n <mi>MeV</mi>\n </mrow>\n <annotation>$150 \\,\\mathrm{MeV}$</annotation>\n </semantics></math> neutron field. The recoil proton LET dropped from approximately <span></span><math>\n <semantics>\n <mrow>\n <mn>47</mn>\n <mspace></mspace>\n <mi>keV</mi>\n <mspace></mspace>\n <mi>μ</mi>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$47\\, \\mathrm{keV}\\,{\\umu}{\\mathrm{m}}^{-1}$</annotation>\n </semantics></math> to nearly one order of magnitude less between 1.2 MeV and 19 MeV, with an average LET of approximately <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mspace></mspace>\n <mi>keV</mi>\n <mspace></mspace>\n <mi>μ</mi>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$2\\, \\mathrm{keV}\\,{\\umu}{\\mathrm{m}}^{-1}$</annotation>\n </semantics></math> at <span></span><math>\n <semantics>\n <mrow>\n <mn>150</mn>\n <mspace></mspace>\n <mi>MeV</mi>\n </mrow>\n <annotation>$150 \\,\\mathrm{MeV}$</annotation>\n </semantics></math>.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This study compares FNTD and PADC detector sensitivities, demonstrating a notable energy and converter thickness dependence for FNTDs, which is essential for precise dosimetry. Accurate <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$H^{*}$</annotation>\n </semantics></math>(10) values for fast mono-energetic neutrons up to <span></span><math>\n <semantics>\n <mrow>\n <mn>19</mn>\n <mspace></mspace>\n <mi>MeV</mi>\n </mrow>\n <annotation>$19 \\,\\mathrm{MeV}$</annotation>\n </semantics></math> were determined utilizing MC simulations. A benchmarked MC model for fast neutrons was then applied to analyze the FNTD signal for high-energy neutrons.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"52 7","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mp.17799","citationCount":"0","resultStr":"{\"title\":\"Sensitivity analysis of fluorescent nuclear track detectors for fast and high-energy mono-energetic neutron dosimetry\",\"authors\":\"Stefan Schmidt,&nbsp;Jeppe B. Christensen,&nbsp;Benjamin Lutz,&nbsp;Alberto Stabilini,&nbsp;Eduardo G. Yukihara,&nbsp;José Vedelago\",\"doi\":\"10.1002/mp.17799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>In ion beam radiotherapy, treatment radiation fields are inevitably contaminated with secondary neutrons. The energies of these neutrons can reach several hundreds of MeV. Fluorescent nuclear track detectors (FNTDs) offer a promising solution for dosimetry of fast and high-energy neutrons, particularly given their low linear energy transfer in water (LET) detection threshold.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>This study presents an experimental FNTD sensitivity analysis in six fast mono-energetic neutron fields, comparing the response to poly allyl diglycol carbonate (PADC) neutron detectors, and investigates the feasibility of estimating ambient dose equivalent for neutrons, <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$H^{*}$</annotation>\\n </semantics></math>(10). Moreover, it investigates the impact of converter thickness on the detector signal for both fast and high-energy neutrons and analyzes the resulting differences in signal.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>FNTDs and PADCs were exposed to mono-energetic neutron fields with energies of 1.2 MeV, 2.5 MeV, 5 MeV, 6.5 MeV, 14.8 MeV, and 19 MeV and evaluated based on the track density. The <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$H^{*}$</annotation>\\n </semantics></math>(10) values for FNTDs were determined by applying energy calibration factors, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k(E)$</annotation>\\n </semantics></math>, which were determined through Monte Carlo (MC) simulations. The benchmarked MC model is employed to investigate the sensitivity of FNTDs to high-energy neutrons up to 200 MeV for various polyethylene (PE) converter thicknesses and to analyze the detector signal, including the particle type and the recoil proton LET.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The sensitivity values revealed an energy dependence for FNTDs, with variations by a factor of up to 23, whereas PADC detectors showed a smaller variation, ranging from 3 to 12. Accurate <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$H^{*}$</annotation>\\n </semantics></math>(10) estimation can be achieved employing MC-derived <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k(E)$</annotation>\\n </semantics></math> factors, with deviations not exceeding <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>10</mn>\\n <mspace></mspace>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$10\\\\, \\\\%$</annotation>\\n </semantics></math>. The sensitivity values increased almost continuously up to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>200</mn>\\n <mspace></mspace>\\n <mi>MeV</mi>\\n </mrow>\\n <annotation>$200 \\\\,\\\\mathrm{MeV}$</annotation>\\n </semantics></math> for PE converter thicknesses above <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mspace></mspace>\\n <mi>mm</mi>\\n </mrow>\\n <annotation>$2 \\\\,\\\\mathrm{mm}$</annotation>\\n </semantics></math>, whereas plateaued for thinner PE converters above 10 MeV to 15 MeV. For neutrons above <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>20</mn>\\n <mspace></mspace>\\n <mi>MeV</mi>\\n </mrow>\\n <annotation>$20 \\\\,\\\\mathrm{MeV}$</annotation>\\n </semantics></math>, the generated fragments are deuterons, tritons and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mn>4</mn>\\n </msup>\\n <mi>He</mi>\\n </mrow>\\n <annotation>$^{4}{\\\\rm He}$</annotation>\\n </semantics></math>, which constitutes up to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>15</mn>\\n <mspace></mspace>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$15 \\\\,\\\\%$</annotation>\\n </semantics></math> or more of the total fluence in a <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>150</mn>\\n <mspace></mspace>\\n <mi>MeV</mi>\\n </mrow>\\n <annotation>$150 \\\\,\\\\mathrm{MeV}$</annotation>\\n </semantics></math> neutron field. The recoil proton LET dropped from approximately <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>47</mn>\\n <mspace></mspace>\\n <mi>keV</mi>\\n <mspace></mspace>\\n <mi>μ</mi>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$47\\\\, \\\\mathrm{keV}\\\\,{\\\\umu}{\\\\mathrm{m}}^{-1}$</annotation>\\n </semantics></math> to nearly one order of magnitude less between 1.2 MeV and 19 MeV, with an average LET of approximately <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mspace></mspace>\\n <mi>keV</mi>\\n <mspace></mspace>\\n <mi>μ</mi>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$2\\\\, \\\\mathrm{keV}\\\\,{\\\\umu}{\\\\mathrm{m}}^{-1}$</annotation>\\n </semantics></math> at <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>150</mn>\\n <mspace></mspace>\\n <mi>MeV</mi>\\n </mrow>\\n <annotation>$150 \\\\,\\\\mathrm{MeV}$</annotation>\\n </semantics></math>.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>This study compares FNTD and PADC detector sensitivities, demonstrating a notable energy and converter thickness dependence for FNTDs, which is essential for precise dosimetry. Accurate <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$H^{*}$</annotation>\\n </semantics></math>(10) values for fast mono-energetic neutrons up to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>19</mn>\\n <mspace></mspace>\\n <mi>MeV</mi>\\n </mrow>\\n <annotation>$19 \\\\,\\\\mathrm{MeV}$</annotation>\\n </semantics></math> were determined utilizing MC simulations. A benchmarked MC model for fast neutrons was then applied to analyze the FNTD signal for high-energy neutrons.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18384,\"journal\":{\"name\":\"Medical physics\",\"volume\":\"52 7\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mp.17799\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mp.17799\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17799","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:在离子束放射治疗中,治疗辐射场不可避免地受到二次中子的污染。这些中子的能量可以达到几百兆电子伏特。荧光核径迹检测器(FNTDs)为快速和高能中子的剂量测定提供了一种很有前途的解决方案,特别是考虑到它们在水中的线性能量转移(LET)检测阈值较低。目的:本文对6个快速单能中子场的FNTD灵敏度进行了实验分析,比较了PADC(聚烯丙基二甘醇碳酸酯)中子探测器的响应,并探讨了估算中子环境剂量当量H∗$H^{*}$(10)的可行性。此外,本文还研究了转换器厚度对快中子和高能中子探测器信号的影响,并分析了由此产生的信号差异。方法:将FNTDs和PADCs分别暴露于能量分别为1.2 MeV、2.5 MeV、5 MeV、6.5 MeV、14.8 MeV和19 MeV的单能中子场中,并根据径迹密度进行评价。FNTDs的H∗$H^{*}$(10)值由能量校正因子k(E)$ k(E)$确定,该因子由Monte Carlo (MC)模拟确定。采用基准MC模型研究了不同聚乙烯(PE)转炉厚度下FNTDs对高达200 MeV的高能中子的敏感性,并分析了探测器信号,包括粒子类型和反冲质子LET。结果:灵敏度值揭示了FNTDs的能量依赖性,其变化因子高达23,而PADC探测器的变化较小,范围为3至12。使用mc衍生的k(E)$ k(E)$因子可以获得精确的H∗$H^{*}$(10)估计,偏差不超过10% $10\,\%$。对于厚度大于2 mm的PE转换器,灵敏度值几乎连续增加到200 MeV,而对于厚度大于10 MeV至15 MeV的较薄PE转换器,灵敏度值趋于稳定。对于20 MeV以上的中子,产生的碎片是氘核、三合子和4he ^{4}{\rm He}$,它们在150 MeV的中子场中占总能量的15% $15 \,\%$或更多。反作用质子的LET从大约47 keV μ m -1 $47\, \ mathm {keV}\,{\umu}{\ mathm {m}}^{-1}$下降到1.2 MeV和19 MeV之间的近一个数量级,在150 MeV $150 \,\ mathm {MeV}$时的平均LET约为2 keV μ m -1 $2\, \ mathm {keV}\,{\umu}{\ mathm {m}}^{-1}$。本研究比较了FNTD和PADC探测器的灵敏度,证明了FNTD对能量和转换器厚度的显著依赖,这对于精确剂量测定至关重要。利用MC模拟确定了高达19 MeV的快速单能中子的精确H∗$H^{*}$(10)值$19 \,\ mathm {MeV}$。然后应用快中子基准MC模型分析了高能中子的FNTD信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sensitivity analysis of fluorescent nuclear track detectors for fast and high-energy mono-energetic neutron dosimetry

Sensitivity analysis of fluorescent nuclear track detectors for fast and high-energy mono-energetic neutron dosimetry

Background

In ion beam radiotherapy, treatment radiation fields are inevitably contaminated with secondary neutrons. The energies of these neutrons can reach several hundreds of MeV. Fluorescent nuclear track detectors (FNTDs) offer a promising solution for dosimetry of fast and high-energy neutrons, particularly given their low linear energy transfer in water (LET) detection threshold.

Purpose

This study presents an experimental FNTD sensitivity analysis in six fast mono-energetic neutron fields, comparing the response to poly allyl diglycol carbonate (PADC) neutron detectors, and investigates the feasibility of estimating ambient dose equivalent for neutrons, H $H^{*}$ (10). Moreover, it investigates the impact of converter thickness on the detector signal for both fast and high-energy neutrons and analyzes the resulting differences in signal.

Methods

FNTDs and PADCs were exposed to mono-energetic neutron fields with energies of 1.2 MeV, 2.5 MeV, 5 MeV, 6.5 MeV, 14.8 MeV, and 19 MeV and evaluated based on the track density. The H $H^{*}$ (10) values for FNTDs were determined by applying energy calibration factors, k ( E ) $k(E)$ , which were determined through Monte Carlo (MC) simulations. The benchmarked MC model is employed to investigate the sensitivity of FNTDs to high-energy neutrons up to 200 MeV for various polyethylene (PE) converter thicknesses and to analyze the detector signal, including the particle type and the recoil proton LET.

Results

The sensitivity values revealed an energy dependence for FNTDs, with variations by a factor of up to 23, whereas PADC detectors showed a smaller variation, ranging from 3 to 12. Accurate H $H^{*}$ (10) estimation can be achieved employing MC-derived k ( E ) $k(E)$ factors, with deviations not exceeding 10 % $10\, \%$ . The sensitivity values increased almost continuously up to 200 MeV $200 \,\mathrm{MeV}$ for PE converter thicknesses above 2 mm $2 \,\mathrm{mm}$ , whereas plateaued for thinner PE converters above 10 MeV to 15 MeV. For neutrons above 20 MeV $20 \,\mathrm{MeV}$ , the generated fragments are deuterons, tritons and 4 He $^{4}{\rm He}$ , which constitutes up to 15 % $15 \,\%$ or more of the total fluence in a 150 MeV $150 \,\mathrm{MeV}$ neutron field. The recoil proton LET dropped from approximately 47 keV μ m 1 $47\, \mathrm{keV}\,{\umu}{\mathrm{m}}^{-1}$ to nearly one order of magnitude less between 1.2 MeV and 19 MeV, with an average LET of approximately 2 keV μ m 1 $2\, \mathrm{keV}\,{\umu}{\mathrm{m}}^{-1}$ at 150 MeV $150 \,\mathrm{MeV}$ .

Conclusions

This study compares FNTD and PADC detector sensitivities, demonstrating a notable energy and converter thickness dependence for FNTDs, which is essential for precise dosimetry. Accurate H $H^{*}$ (10) values for fast mono-energetic neutrons up to 19 MeV $19 \,\mathrm{MeV}$ were determined utilizing MC simulations. A benchmarked MC model for fast neutrons was then applied to analyze the FNTD signal for high-energy neutrons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical physics
Medical physics 医学-核医学
CiteScore
6.80
自引率
15.80%
发文量
660
审稿时长
1.7 months
期刊介绍: Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信