{"title":"河马通路:连接环境线索和生活节奏的分子桥梁。","authors":"Ehsan Pashay Ahi, Bineet Panda, Craig R Primmer","doi":"10.1186/s12862-025-02378-8","DOIUrl":null,"url":null,"abstract":"<p><p>The pace of life (POL) is shaped by a complex interplay between genetic and environmental factors, influencing growth, maturation, and lifespan across species. The Hippo signaling pathway, a key regulator of organ size and cellular homeostasis, has emerged as a central integrator of environmental cues that modulate POL traits. In this review, we explore how the Hippo pathway links environmental factors-such as temperature fluctuations and dietary energy availability-to molecular mechanisms governing metabolic balance, hormonal signaling, and reproductive timing. Specifically, we highlight the regulatory interactions between the Hippo pathway and metabolic sensors (AMPK, mTOR, SIRT1 and DLK1-Notch), as well as hormonal signals (IGF-1, kisspeptin, leptin, cortisol, thyroid and sex steroids), which together orchestrate key life-history traits, including growth rates, lifespan and sexual maturation, with a particular emphasis on their role in reproductive timing. Furthermore, we consider its role as a potential coordinator of POL-related molecular processes, such as telomere dynamics and epigenetic mechanisms, within a broader regulatory network. By integrating insights from molecular biology and eco-evolutionary perspectives, we propose future directions to dissect the Hippo pathway's role in POL regulation across taxa. Understanding these interactions will provide new perspectives on how organisms adaptively adjust life-history strategies in response to environmental variability.</p>","PeriodicalId":93910,"journal":{"name":"BMC ecology and evolution","volume":"25 1","pages":"35"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020181/pdf/","citationCount":"0","resultStr":"{\"title\":\"The hippo pathway: a molecular bridge between environmental cues and pace of life.\",\"authors\":\"Ehsan Pashay Ahi, Bineet Panda, Craig R Primmer\",\"doi\":\"10.1186/s12862-025-02378-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pace of life (POL) is shaped by a complex interplay between genetic and environmental factors, influencing growth, maturation, and lifespan across species. The Hippo signaling pathway, a key regulator of organ size and cellular homeostasis, has emerged as a central integrator of environmental cues that modulate POL traits. In this review, we explore how the Hippo pathway links environmental factors-such as temperature fluctuations and dietary energy availability-to molecular mechanisms governing metabolic balance, hormonal signaling, and reproductive timing. Specifically, we highlight the regulatory interactions between the Hippo pathway and metabolic sensors (AMPK, mTOR, SIRT1 and DLK1-Notch), as well as hormonal signals (IGF-1, kisspeptin, leptin, cortisol, thyroid and sex steroids), which together orchestrate key life-history traits, including growth rates, lifespan and sexual maturation, with a particular emphasis on their role in reproductive timing. Furthermore, we consider its role as a potential coordinator of POL-related molecular processes, such as telomere dynamics and epigenetic mechanisms, within a broader regulatory network. By integrating insights from molecular biology and eco-evolutionary perspectives, we propose future directions to dissect the Hippo pathway's role in POL regulation across taxa. Understanding these interactions will provide new perspectives on how organisms adaptively adjust life-history strategies in response to environmental variability.</p>\",\"PeriodicalId\":93910,\"journal\":{\"name\":\"BMC ecology and evolution\",\"volume\":\"25 1\",\"pages\":\"35\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020181/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC ecology and evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12862-025-02378-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC ecology and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-025-02378-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
The hippo pathway: a molecular bridge between environmental cues and pace of life.
The pace of life (POL) is shaped by a complex interplay between genetic and environmental factors, influencing growth, maturation, and lifespan across species. The Hippo signaling pathway, a key regulator of organ size and cellular homeostasis, has emerged as a central integrator of environmental cues that modulate POL traits. In this review, we explore how the Hippo pathway links environmental factors-such as temperature fluctuations and dietary energy availability-to molecular mechanisms governing metabolic balance, hormonal signaling, and reproductive timing. Specifically, we highlight the regulatory interactions between the Hippo pathway and metabolic sensors (AMPK, mTOR, SIRT1 and DLK1-Notch), as well as hormonal signals (IGF-1, kisspeptin, leptin, cortisol, thyroid and sex steroids), which together orchestrate key life-history traits, including growth rates, lifespan and sexual maturation, with a particular emphasis on their role in reproductive timing. Furthermore, we consider its role as a potential coordinator of POL-related molecular processes, such as telomere dynamics and epigenetic mechanisms, within a broader regulatory network. By integrating insights from molecular biology and eco-evolutionary perspectives, we propose future directions to dissect the Hippo pathway's role in POL regulation across taxa. Understanding these interactions will provide new perspectives on how organisms adaptively adjust life-history strategies in response to environmental variability.