不平等的执行,不平等的推断:重新思考我们如何定义政策风险。

Health affairs scholar Pub Date : 2025-03-28 eCollection Date: 2025-04-01 DOI:10.1093/haschl/qxaf063
Simone Wien, Ariana N Mora, Michael R Kramer
{"title":"不平等的执行,不平等的推断:重新思考我们如何定义政策风险。","authors":"Simone Wien, Ariana N Mora, Michael R Kramer","doi":"10.1093/haschl/qxaf063","DOIUrl":null,"url":null,"abstract":"<p><p>Social policy is a powerful intervention that has the potential to reduce or widen inequities in population health. While studies estimating the causal effect of social policies on health are valuable to policy stakeholders, these studies frequently report unstratified estimates for the total population, even though differential enforcement by sub-unit populations and geographies is common. The analytical decision to report unstratified estimates assumes a single version of the social policy is implemented uniformly across populations; in the presence of biased implementation, these analyses can generate misleading results that impede meaningful policy evaluation. In this commentary, we highlight the importance of considering differential policy effects among subpopulations as a function of poorly defined policy exposure (ie, lack of causal consistency) rather than effect measure modification or mediation. Framing the issue as one of poorly defined policy exposure allows for critical disentangling of the explicit and implicit purposes of a policy.</p>","PeriodicalId":94025,"journal":{"name":"Health affairs scholar","volume":"3 4","pages":"qxaf063"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001023/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unequal enforcement, unequal inference: rethinking how we define policy exposures.\",\"authors\":\"Simone Wien, Ariana N Mora, Michael R Kramer\",\"doi\":\"10.1093/haschl/qxaf063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Social policy is a powerful intervention that has the potential to reduce or widen inequities in population health. While studies estimating the causal effect of social policies on health are valuable to policy stakeholders, these studies frequently report unstratified estimates for the total population, even though differential enforcement by sub-unit populations and geographies is common. The analytical decision to report unstratified estimates assumes a single version of the social policy is implemented uniformly across populations; in the presence of biased implementation, these analyses can generate misleading results that impede meaningful policy evaluation. In this commentary, we highlight the importance of considering differential policy effects among subpopulations as a function of poorly defined policy exposure (ie, lack of causal consistency) rather than effect measure modification or mediation. Framing the issue as one of poorly defined policy exposure allows for critical disentangling of the explicit and implicit purposes of a policy.</p>\",\"PeriodicalId\":94025,\"journal\":{\"name\":\"Health affairs scholar\",\"volume\":\"3 4\",\"pages\":\"qxaf063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001023/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health affairs scholar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/haschl/qxaf063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health affairs scholar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/haschl/qxaf063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社会政策是一种强有力的干预措施,有可能减少或扩大人口健康方面的不平等。虽然估计社会政策对健康的因果影响的研究对政策利益攸关方很有价值,但这些研究经常报告对总人口的未分层估计,尽管亚单位人口和地理区域的不同执行情况很常见。报告非分层估计的分析决定假设社会政策的单一版本在人口中得到统一执行;在存在偏差的执行情况下,这些分析可能产生误导性的结果,阻碍有意义的政策评估。在这篇评论中,我们强调了将亚人群之间的政策差异效应视为定义不清的政策暴露(即缺乏因果一致性)的函数的重要性,而不是将效果测量修改或调解考虑在内。将该问题定义为定义不明确的政策暴露之一,可以将政策的明确目的和隐含目的关键地分离开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unequal enforcement, unequal inference: rethinking how we define policy exposures.

Social policy is a powerful intervention that has the potential to reduce or widen inequities in population health. While studies estimating the causal effect of social policies on health are valuable to policy stakeholders, these studies frequently report unstratified estimates for the total population, even though differential enforcement by sub-unit populations and geographies is common. The analytical decision to report unstratified estimates assumes a single version of the social policy is implemented uniformly across populations; in the presence of biased implementation, these analyses can generate misleading results that impede meaningful policy evaluation. In this commentary, we highlight the importance of considering differential policy effects among subpopulations as a function of poorly defined policy exposure (ie, lack of causal consistency) rather than effect measure modification or mediation. Framing the issue as one of poorly defined policy exposure allows for critical disentangling of the explicit and implicit purposes of a policy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信