对四个领域降维用法的批判性分析。

Dylan Cashman, Mark Keller, Hyeon Jeon, Bum Chul Kwon, Qianwen Wang
{"title":"对四个领域降维用法的批判性分析。","authors":"Dylan Cashman, Mark Keller, Hyeon Jeon, Bum Chul Kwon, Qianwen Wang","doi":"10.1109/TVCG.2025.3567989","DOIUrl":null,"url":null,"abstract":"<p><p>Dimensionality reduction is used as an important tool for unraveling the complexities of high-dimensional datasets in many fields of science, such as cell biology, chemical informatics, and physics. Visualizations of the dimensionally-reduced data enable scientists to delve into the intrinsic structures of their datasets and align them with established hypotheses. Visualization researchers have thus proposed many dimensionality reduction methods and interactive systems designed to uncover latent structures. At the same time, different scientific domains have formulated guidelines or common workflows for using dimensionality reduction techniques and visualizations for their respective fields. In this work, we present a critical analysis of the usage of dimensionality reduction in scientific domains outside of computer science. First, we conduct a bibliometric analysis of 21,249 academic publications that use dimensionality reduction to observe differences in the frequency of techniques across fields. Next, we conduct a survey of a 71-paper sample from four fields: biology, chemistry, physics, and business. Through this survey, we uncover common workflows, processes, and usage patterns, including the mixed use of confirmatory data analysis to validate a dataset and projection method and exploratory data analysis to then generate more hypotheses. We also find that misinterpretations and inappropriate usage is common, particularly in the visual interpretation of the resulting dimensionally reduced view. Lastly, we compare our observations with recent works in the visualization community in order to match work within our community to potential areas of impact outside our community. By comparing the usage found within scientific fields to the recent research output of the visualization community, we offer both validation of the progress of visualization research into dimensionality reduction and a call for action to produce techniques that meet the needs of scientific users.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Critical Analysis of the Usage of Dimensionality Reduction in Four Domains.\",\"authors\":\"Dylan Cashman, Mark Keller, Hyeon Jeon, Bum Chul Kwon, Qianwen Wang\",\"doi\":\"10.1109/TVCG.2025.3567989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dimensionality reduction is used as an important tool for unraveling the complexities of high-dimensional datasets in many fields of science, such as cell biology, chemical informatics, and physics. Visualizations of the dimensionally-reduced data enable scientists to delve into the intrinsic structures of their datasets and align them with established hypotheses. Visualization researchers have thus proposed many dimensionality reduction methods and interactive systems designed to uncover latent structures. At the same time, different scientific domains have formulated guidelines or common workflows for using dimensionality reduction techniques and visualizations for their respective fields. In this work, we present a critical analysis of the usage of dimensionality reduction in scientific domains outside of computer science. First, we conduct a bibliometric analysis of 21,249 academic publications that use dimensionality reduction to observe differences in the frequency of techniques across fields. Next, we conduct a survey of a 71-paper sample from four fields: biology, chemistry, physics, and business. Through this survey, we uncover common workflows, processes, and usage patterns, including the mixed use of confirmatory data analysis to validate a dataset and projection method and exploratory data analysis to then generate more hypotheses. We also find that misinterpretations and inappropriate usage is common, particularly in the visual interpretation of the resulting dimensionally reduced view. Lastly, we compare our observations with recent works in the visualization community in order to match work within our community to potential areas of impact outside our community. By comparing the usage found within scientific fields to the recent research output of the visualization community, we offer both validation of the progress of visualization research into dimensionality reduction and a call for action to produce techniques that meet the needs of scientific users.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3567989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3567989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多科学领域,如细胞生物学、化学信息学和物理学,降维被用作揭示高维数据集复杂性的重要工具。降维数据的可视化使科学家能够深入研究数据集的内在结构,并将其与已建立的假设相结合。可视化研究人员因此提出了许多降维方法和交互系统,旨在揭示潜在的结构。与此同时,不同的科学领域已经为各自的领域制定了使用降维技术和可视化的指导方针或通用工作流程。在这项工作中,我们对降维在计算机科学以外的科学领域的使用进行了批判性分析。首先,我们对21,249份学术出版物进行了文献计量分析,这些出版物使用降维来观察不同领域技术使用频率的差异。接下来,我们对来自四个领域的71篇论文样本进行了调查:生物、化学、物理和商业。通过这项调查,我们发现了常见的工作流程、流程和使用模式,包括混合使用验证性数据分析来验证数据集和预测方法,以及探索性数据分析,然后产生更多的假设。我们还发现,误解和不适当的使用是常见的,特别是在视觉上的解释所产生的维度减少的视图。最后,我们将我们的观察结果与可视化社区最近的工作进行比较,以便将我们社区内的工作与我们社区外的潜在影响领域相匹配。通过将科学领域的使用情况与可视化社区最近的研究成果进行比较,我们既验证了可视化研究在降维方面的进展,也呼吁采取行动,生产满足科学用户需求的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Critical Analysis of the Usage of Dimensionality Reduction in Four Domains.

Dimensionality reduction is used as an important tool for unraveling the complexities of high-dimensional datasets in many fields of science, such as cell biology, chemical informatics, and physics. Visualizations of the dimensionally-reduced data enable scientists to delve into the intrinsic structures of their datasets and align them with established hypotheses. Visualization researchers have thus proposed many dimensionality reduction methods and interactive systems designed to uncover latent structures. At the same time, different scientific domains have formulated guidelines or common workflows for using dimensionality reduction techniques and visualizations for their respective fields. In this work, we present a critical analysis of the usage of dimensionality reduction in scientific domains outside of computer science. First, we conduct a bibliometric analysis of 21,249 academic publications that use dimensionality reduction to observe differences in the frequency of techniques across fields. Next, we conduct a survey of a 71-paper sample from four fields: biology, chemistry, physics, and business. Through this survey, we uncover common workflows, processes, and usage patterns, including the mixed use of confirmatory data analysis to validate a dataset and projection method and exploratory data analysis to then generate more hypotheses. We also find that misinterpretations and inappropriate usage is common, particularly in the visual interpretation of the resulting dimensionally reduced view. Lastly, we compare our observations with recent works in the visualization community in order to match work within our community to potential areas of impact outside our community. By comparing the usage found within scientific fields to the recent research output of the visualization community, we offer both validation of the progress of visualization research into dimensionality reduction and a call for action to produce techniques that meet the needs of scientific users.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信