Arianna Bellazzo, Barbara Montico, Roberto Guerrieri, Francesca Colizzi, Agostino Steffan, Jerry Polesel, Elisabetta Fratta
{"title":"揭示缺氧诱导因子在皮肤黑色素瘤中的作用:从机制到治疗机会。","authors":"Arianna Bellazzo, Barbara Montico, Roberto Guerrieri, Francesca Colizzi, Agostino Steffan, Jerry Polesel, Elisabetta Fratta","doi":"10.1186/s12964-025-02173-4","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia is a common feature of solid malignancies, including cutaneous melanoma (CM). Hypoxia-inducible factor (HIF)-1α and HIF-2α orchestrate cellular responses to hypoxia and coordinate a transcriptional program that promote several aggressive features in CM, such as angiogenesis, epithelial-mesenchymal transition, metastasis formation, metabolic rewiring, and immune escape. BRAF<sup>V600E</sup>, which is the most frequent mutation observed in CM patients, usually increases HIF-α signaling not only in hypoxia, but also in normoxic CM cells, enabling HIF-1α and HIF-2α to continuously activate downstream molecular pathways. In this review, we aim to provide a comprehensive overview of the intricate role and regulation of HIF-1α and HIF-2α in CM, with a brief focus on the complex interactions between HIF-α subunits and non-coding RNAs. We also discuss HIF-α-mediated cellular responses in normoxia along with the mechanisms that allow HIF-α subunits to maintain their stability under normal oxygen conditions. Finally, we resume available evidence on potential therapeutic approaches aimed at targeting HIF-1α and/or HIF-2α.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"177"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11984274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the role of hypoxia-inducible factors in cutaneous melanoma: from mechanisms to therapeutic opportunities.\",\"authors\":\"Arianna Bellazzo, Barbara Montico, Roberto Guerrieri, Francesca Colizzi, Agostino Steffan, Jerry Polesel, Elisabetta Fratta\",\"doi\":\"10.1186/s12964-025-02173-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxia is a common feature of solid malignancies, including cutaneous melanoma (CM). Hypoxia-inducible factor (HIF)-1α and HIF-2α orchestrate cellular responses to hypoxia and coordinate a transcriptional program that promote several aggressive features in CM, such as angiogenesis, epithelial-mesenchymal transition, metastasis formation, metabolic rewiring, and immune escape. BRAF<sup>V600E</sup>, which is the most frequent mutation observed in CM patients, usually increases HIF-α signaling not only in hypoxia, but also in normoxic CM cells, enabling HIF-1α and HIF-2α to continuously activate downstream molecular pathways. In this review, we aim to provide a comprehensive overview of the intricate role and regulation of HIF-1α and HIF-2α in CM, with a brief focus on the complex interactions between HIF-α subunits and non-coding RNAs. We also discuss HIF-α-mediated cellular responses in normoxia along with the mechanisms that allow HIF-α subunits to maintain their stability under normal oxygen conditions. Finally, we resume available evidence on potential therapeutic approaches aimed at targeting HIF-1α and/or HIF-2α.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"23 1\",\"pages\":\"177\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11984274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-025-02173-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02173-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Unraveling the role of hypoxia-inducible factors in cutaneous melanoma: from mechanisms to therapeutic opportunities.
Hypoxia is a common feature of solid malignancies, including cutaneous melanoma (CM). Hypoxia-inducible factor (HIF)-1α and HIF-2α orchestrate cellular responses to hypoxia and coordinate a transcriptional program that promote several aggressive features in CM, such as angiogenesis, epithelial-mesenchymal transition, metastasis formation, metabolic rewiring, and immune escape. BRAFV600E, which is the most frequent mutation observed in CM patients, usually increases HIF-α signaling not only in hypoxia, but also in normoxic CM cells, enabling HIF-1α and HIF-2α to continuously activate downstream molecular pathways. In this review, we aim to provide a comprehensive overview of the intricate role and regulation of HIF-1α and HIF-2α in CM, with a brief focus on the complex interactions between HIF-α subunits and non-coding RNAs. We also discuss HIF-α-mediated cellular responses in normoxia along with the mechanisms that allow HIF-α subunits to maintain their stability under normal oxygen conditions. Finally, we resume available evidence on potential therapeutic approaches aimed at targeting HIF-1α and/or HIF-2α.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.