José Lapeña-Motilva, Daniel Fouz-Ruiz, Mariano Ruiz-Ortiz, Eduardo Sanpedro-Murillo, Sara Gómez-Enjuto, Inés Hernando-Jimenez, Aida Frias-González, Andrea Soledad Suso, Evangelina Merida-Herrero, Julián Benito-León
{"title":"透析COVID-19幸存者的脑血流动力学改变:经颅多普勒超声对颅内压动力学的研究","authors":"José Lapeña-Motilva, Daniel Fouz-Ruiz, Mariano Ruiz-Ortiz, Eduardo Sanpedro-Murillo, Sara Gómez-Enjuto, Inés Hernando-Jimenez, Aida Frias-González, Andrea Soledad Suso, Evangelina Merida-Herrero, Julián Benito-León","doi":"10.3390/kidneydial5020012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We observed a COVID-19 survivor with a ventriculoperitoneal shunt who developed increased intracranial pressure during hemodialysis. We hypothesized that post-SARS-CoV-2 infection, patients may have altered cerebral perfusion pressure regulation in response to intracranial pressure changes.</p><p><strong>Methods: </strong>From April to July 2021, we recruited dialysis patients with prior COVID-19 from two Madrid nephrology departments. We also recruited age- and sex-matched dialysis patients without prior SARS-CoV-2 infection. Transcranial Doppler ultrasound was used to measure the middle cerebral artery velocity before dialysis and 30, 60, and 90 min after the initiation of dialysis.</p><p><strong>Results: </strong>The final sample included 37 patients (16 post-COVID-19 and 21 without). The COVID-19 survivors showed a significant pulsatility index increase between 30 and 60 min compared to those without COVID-19. They also had lower heart rates.</p><p><strong>Conclusions: </strong>We propose two mechanisms: an increase in intracranial pressure or a decreased arterial elasticity. A lower heart rate was also observed in the COVID-19 survivors. This study highlights SARS-CoV-2's multifaceted effects, including potential long-term vascular and cerebral repercussions.</p>","PeriodicalId":74038,"journal":{"name":"Kidney and dialysis","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cerebral Hemodynamic Alterations in Dialysis COVID-19 Survivors: A Transcranial Doppler Ultrasound Study on Intracranial Pressure Dynamics.\",\"authors\":\"José Lapeña-Motilva, Daniel Fouz-Ruiz, Mariano Ruiz-Ortiz, Eduardo Sanpedro-Murillo, Sara Gómez-Enjuto, Inés Hernando-Jimenez, Aida Frias-González, Andrea Soledad Suso, Evangelina Merida-Herrero, Julián Benito-León\",\"doi\":\"10.3390/kidneydial5020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We observed a COVID-19 survivor with a ventriculoperitoneal shunt who developed increased intracranial pressure during hemodialysis. We hypothesized that post-SARS-CoV-2 infection, patients may have altered cerebral perfusion pressure regulation in response to intracranial pressure changes.</p><p><strong>Methods: </strong>From April to July 2021, we recruited dialysis patients with prior COVID-19 from two Madrid nephrology departments. We also recruited age- and sex-matched dialysis patients without prior SARS-CoV-2 infection. Transcranial Doppler ultrasound was used to measure the middle cerebral artery velocity before dialysis and 30, 60, and 90 min after the initiation of dialysis.</p><p><strong>Results: </strong>The final sample included 37 patients (16 post-COVID-19 and 21 without). The COVID-19 survivors showed a significant pulsatility index increase between 30 and 60 min compared to those without COVID-19. They also had lower heart rates.</p><p><strong>Conclusions: </strong>We propose two mechanisms: an increase in intracranial pressure or a decreased arterial elasticity. A lower heart rate was also observed in the COVID-19 survivors. This study highlights SARS-CoV-2's multifaceted effects, including potential long-term vascular and cerebral repercussions.</p>\",\"PeriodicalId\":74038,\"journal\":{\"name\":\"Kidney and dialysis\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kidney and dialysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/kidneydial5020012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney and dialysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/kidneydial5020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Cerebral Hemodynamic Alterations in Dialysis COVID-19 Survivors: A Transcranial Doppler Ultrasound Study on Intracranial Pressure Dynamics.
Background: We observed a COVID-19 survivor with a ventriculoperitoneal shunt who developed increased intracranial pressure during hemodialysis. We hypothesized that post-SARS-CoV-2 infection, patients may have altered cerebral perfusion pressure regulation in response to intracranial pressure changes.
Methods: From April to July 2021, we recruited dialysis patients with prior COVID-19 from two Madrid nephrology departments. We also recruited age- and sex-matched dialysis patients without prior SARS-CoV-2 infection. Transcranial Doppler ultrasound was used to measure the middle cerebral artery velocity before dialysis and 30, 60, and 90 min after the initiation of dialysis.
Results: The final sample included 37 patients (16 post-COVID-19 and 21 without). The COVID-19 survivors showed a significant pulsatility index increase between 30 and 60 min compared to those without COVID-19. They also had lower heart rates.
Conclusions: We propose two mechanisms: an increase in intracranial pressure or a decreased arterial elasticity. A lower heart rate was also observed in the COVID-19 survivors. This study highlights SARS-CoV-2's multifaceted effects, including potential long-term vascular and cerebral repercussions.