{"title":"代谢调节作为阿尔茨海默病的潜在治疗方法。","authors":"Jinmiao Zhong, Jiaxin Sun, Bing Zhou","doi":"10.2174/0115672050379410250421065857","DOIUrl":null,"url":null,"abstract":"<p><p>Lecanemab, a therapeutic antibody designed to target amyloid-beta (Aβ) clearance, has recently been approved by the FDA and introduced in multiple countries, representing a significant milestone in advancing Alzheimer's disease (AD) treatment. However, its limited clinical efficacy underscores the need for further investigation of disease pathogenesis. Emerging evidence suggests that glucose and lipid metabolism dysfunction plays a critical role in AD, with metabolic changes emerging as one of the most significantly altered pathways in the early stage of pathology. These findings highlight the therapeutic potential of targeting metabolic regulation as a strategy to address AD.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic Regulation as a Potential Therapeutic Approach for Alzheimer's Disease.\",\"authors\":\"Jinmiao Zhong, Jiaxin Sun, Bing Zhou\",\"doi\":\"10.2174/0115672050379410250421065857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lecanemab, a therapeutic antibody designed to target amyloid-beta (Aβ) clearance, has recently been approved by the FDA and introduced in multiple countries, representing a significant milestone in advancing Alzheimer's disease (AD) treatment. However, its limited clinical efficacy underscores the need for further investigation of disease pathogenesis. Emerging evidence suggests that glucose and lipid metabolism dysfunction plays a critical role in AD, with metabolic changes emerging as one of the most significantly altered pathways in the early stage of pathology. These findings highlight the therapeutic potential of targeting metabolic regulation as a strategy to address AD.</p>\",\"PeriodicalId\":94309,\"journal\":{\"name\":\"Current Alzheimer research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Alzheimer research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672050379410250421065857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Alzheimer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672050379410250421065857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
leanemab是一种靶向淀粉样蛋白- β (a β)清除的治疗性抗体,最近已获得FDA批准并在多个国家上市,这是推进阿尔茨海默病(AD)治疗的一个重要里程碑。然而,其有限的临床疗效强调了进一步研究疾病发病机制的必要性。越来越多的证据表明,糖脂代谢功能障碍在AD中起着至关重要的作用,代谢变化是病理早期最显著的改变途径之一。这些发现强调了靶向代谢调节作为一种治疗AD的策略的治疗潜力。
Metabolic Regulation as a Potential Therapeutic Approach for Alzheimer's Disease.
Lecanemab, a therapeutic antibody designed to target amyloid-beta (Aβ) clearance, has recently been approved by the FDA and introduced in multiple countries, representing a significant milestone in advancing Alzheimer's disease (AD) treatment. However, its limited clinical efficacy underscores the need for further investigation of disease pathogenesis. Emerging evidence suggests that glucose and lipid metabolism dysfunction plays a critical role in AD, with metabolic changes emerging as one of the most significantly altered pathways in the early stage of pathology. These findings highlight the therapeutic potential of targeting metabolic regulation as a strategy to address AD.