Matthew A Psioda, Nathan W Bean, Brielle A Wright, Yuelin Lu, Alejandro Mantero, Antara Majumdar
{"title":"反概率加权贝叶斯动态借用估计边际治疗效果及其在混合对照肿瘤研究中的应用。","authors":"Matthew A Psioda, Nathan W Bean, Brielle A Wright, Yuelin Lu, Alejandro Mantero, Antara Majumdar","doi":"10.1080/10543406.2025.2489285","DOIUrl":null,"url":null,"abstract":"<p><p>We propose an approach for constructing and evaluating the performance of inverse probability weighted robust mixture priors (IPW-RMP) which are applied to the parameters in treatment group-specific marginal models. Our framework allows practitioners to systematically study the robustness of Bayesian dynamic borrowing using the IPW-RMP to enhance the efficiency of inferences on marginal treatment effects (e.g. marginal risk difference) in a target study being planned. A key assumption motivating our work is that the data generation processes for the target study and external data source (e.g. historical study) will not be the same, likely having different distributions for key prognostic factors and possibly different outcome distributions even for individuals who have identical prognostic factors (e.g. different outcome model parameters). We demonstrate the approach using simulation studies based on both binary and time-to-event outcomes, and via a case study based on actual clinical trial data for a solid tumor cancer program. Our simulation results show that when the distribution of risk factors does in fact differ, the IPW-RMP provides improved performance compared to a standard RMP (e.g. increased power and reduced bias of the posterior mean point estimator) with essentially no loss of performance when the risk factor distributions do not differ. Thus, the IPW-RMP can safely be used in any situation where a standard RMP is appropriate.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-23"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse probability weighted Bayesian dynamic borrowing for estimation of marginal treatment effects with application to hybrid control arm oncology studies.\",\"authors\":\"Matthew A Psioda, Nathan W Bean, Brielle A Wright, Yuelin Lu, Alejandro Mantero, Antara Majumdar\",\"doi\":\"10.1080/10543406.2025.2489285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose an approach for constructing and evaluating the performance of inverse probability weighted robust mixture priors (IPW-RMP) which are applied to the parameters in treatment group-specific marginal models. Our framework allows practitioners to systematically study the robustness of Bayesian dynamic borrowing using the IPW-RMP to enhance the efficiency of inferences on marginal treatment effects (e.g. marginal risk difference) in a target study being planned. A key assumption motivating our work is that the data generation processes for the target study and external data source (e.g. historical study) will not be the same, likely having different distributions for key prognostic factors and possibly different outcome distributions even for individuals who have identical prognostic factors (e.g. different outcome model parameters). We demonstrate the approach using simulation studies based on both binary and time-to-event outcomes, and via a case study based on actual clinical trial data for a solid tumor cancer program. Our simulation results show that when the distribution of risk factors does in fact differ, the IPW-RMP provides improved performance compared to a standard RMP (e.g. increased power and reduced bias of the posterior mean point estimator) with essentially no loss of performance when the risk factor distributions do not differ. Thus, the IPW-RMP can safely be used in any situation where a standard RMP is appropriate.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-23\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2025.2489285\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2489285","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Inverse probability weighted Bayesian dynamic borrowing for estimation of marginal treatment effects with application to hybrid control arm oncology studies.
We propose an approach for constructing and evaluating the performance of inverse probability weighted robust mixture priors (IPW-RMP) which are applied to the parameters in treatment group-specific marginal models. Our framework allows practitioners to systematically study the robustness of Bayesian dynamic borrowing using the IPW-RMP to enhance the efficiency of inferences on marginal treatment effects (e.g. marginal risk difference) in a target study being planned. A key assumption motivating our work is that the data generation processes for the target study and external data source (e.g. historical study) will not be the same, likely having different distributions for key prognostic factors and possibly different outcome distributions even for individuals who have identical prognostic factors (e.g. different outcome model parameters). We demonstrate the approach using simulation studies based on both binary and time-to-event outcomes, and via a case study based on actual clinical trial data for a solid tumor cancer program. Our simulation results show that when the distribution of risk factors does in fact differ, the IPW-RMP provides improved performance compared to a standard RMP (e.g. increased power and reduced bias of the posterior mean point estimator) with essentially no loss of performance when the risk factor distributions do not differ. Thus, the IPW-RMP can safely be used in any situation where a standard RMP is appropriate.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.