趋化因子在周围神经损伤和修复中的双重作用。

Fangyuan Wang, Chenglin Zhao, Zhou Jing, Qingyi Wang, Minghe Li, Bingqi Lu, Ao Huo, Wulong Liang, Weihua Hu, Xudong Fu
{"title":"趋化因子在周围神经损伤和修复中的双重作用。","authors":"Fangyuan Wang, Chenglin Zhao, Zhou Jing, Qingyi Wang, Minghe Li, Bingqi Lu, Ao Huo, Wulong Liang, Weihua Hu, Xudong Fu","doi":"10.1186/s41232-025-00375-4","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injuries (PNI) occur in approximately 13-23 per 100,000 individuals, predominantly affecting young and middle-aged adults. These injuries often require a lengthy recovery period, placing substantial burdens on healthcare systems and national economies. Current treatment strategies have not significantly shortened this lengthy regenerative process, highlighting the urgent need for innovative therapeutic interventions. Chemokines were originally noted for their powerful ability to recruit immune cells; however, as research has advanced, it has become increasingly evident that their role in peripheral nerve repair has been underestimated. In this review, we provide the first comprehensive overview of chemokine expression and activity during peripheral nerve injury and regeneration. We summarize the existing literature on chemokine family members, detailing their expression patterns and localization in injured nerves to facilitate further mechanistic investigations. For chemokines that remain controversial, such as CXCL1 and CCL2, we critically examine experimental methodologies and discuss factors underlying conflicting results, ultimately affirming their contributions to promoting nerve repair. Importantly, we highlight the dual nature of chemokines: in the early stages of injury, they initiate reparative responses, activate Schwann cells, regulate Wallerian degeneration, and support nerve recovery; but when the axons are connected and the repair enters the later stages, their persistent proinflammatory effects during later stages may impede the healing process. Additionally, we emphasize that certain chemokines, including CXCL5, CXCL12, and CCL2, can act directly on neurons/axons, thereby accelerating axonal regeneration. Future research should focus on precisely mapping the localization and temporal expression profiles of these chemokines and exploring therapeutic approaches.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"45 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987372/pdf/","citationCount":"0","resultStr":"{\"title\":\"The dual roles of chemokines in peripheral nerve injury and repair.\",\"authors\":\"Fangyuan Wang, Chenglin Zhao, Zhou Jing, Qingyi Wang, Minghe Li, Bingqi Lu, Ao Huo, Wulong Liang, Weihua Hu, Xudong Fu\",\"doi\":\"10.1186/s41232-025-00375-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peripheral nerve injuries (PNI) occur in approximately 13-23 per 100,000 individuals, predominantly affecting young and middle-aged adults. These injuries often require a lengthy recovery period, placing substantial burdens on healthcare systems and national economies. Current treatment strategies have not significantly shortened this lengthy regenerative process, highlighting the urgent need for innovative therapeutic interventions. Chemokines were originally noted for their powerful ability to recruit immune cells; however, as research has advanced, it has become increasingly evident that their role in peripheral nerve repair has been underestimated. In this review, we provide the first comprehensive overview of chemokine expression and activity during peripheral nerve injury and regeneration. We summarize the existing literature on chemokine family members, detailing their expression patterns and localization in injured nerves to facilitate further mechanistic investigations. For chemokines that remain controversial, such as CXCL1 and CCL2, we critically examine experimental methodologies and discuss factors underlying conflicting results, ultimately affirming their contributions to promoting nerve repair. Importantly, we highlight the dual nature of chemokines: in the early stages of injury, they initiate reparative responses, activate Schwann cells, regulate Wallerian degeneration, and support nerve recovery; but when the axons are connected and the repair enters the later stages, their persistent proinflammatory effects during later stages may impede the healing process. Additionally, we emphasize that certain chemokines, including CXCL5, CXCL12, and CCL2, can act directly on neurons/axons, thereby accelerating axonal regeneration. Future research should focus on precisely mapping the localization and temporal expression profiles of these chemokines and exploring therapeutic approaches.</p>\",\"PeriodicalId\":94041,\"journal\":{\"name\":\"Inflammation and regeneration\",\"volume\":\"45 1\",\"pages\":\"11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987372/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation and regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41232-025-00375-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41232-025-00375-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

周围神经损伤(PNI)发生率约为13-23 / 10万人,主要影响年轻人和中年人。这些伤害往往需要很长的恢复期,给医疗保健系统和国民经济带来沉重负担。目前的治疗策略并没有显著缩短这一漫长的再生过程,因此迫切需要创新的治疗干预措施。趋化因子最初因其招募免疫细胞的强大能力而闻名;然而,随着研究的深入,越来越明显的是,它们在周围神经修复中的作用被低估了。在这篇综述中,我们首次全面概述了趋化因子在周围神经损伤和再生过程中的表达和活性。我们总结了趋化因子家族成员的现有文献,详细介绍了它们在损伤神经中的表达模式和定位,以促进进一步的机制研究。对于仍有争议的趋化因子,如CXCL1和CCL2,我们严格检查实验方法并讨论冲突结果背后的因素,最终肯定它们对促进神经修复的贡献。重要的是,我们强调趋化因子的双重性质:在损伤的早期阶段,它们启动修复反应,激活雪旺细胞,调节沃勒氏变性,并支持神经恢复;但当轴突连接后,修复进入后期,它们在后期持续的促炎作用可能阻碍愈合过程。此外,我们强调某些趋化因子,包括CXCL5、CXCL12和CCL2,可以直接作用于神经元/轴突,从而加速轴突再生。未来的研究应集中在精确定位和这些趋化因子的时间表达谱和探索治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dual roles of chemokines in peripheral nerve injury and repair.

Peripheral nerve injuries (PNI) occur in approximately 13-23 per 100,000 individuals, predominantly affecting young and middle-aged adults. These injuries often require a lengthy recovery period, placing substantial burdens on healthcare systems and national economies. Current treatment strategies have not significantly shortened this lengthy regenerative process, highlighting the urgent need for innovative therapeutic interventions. Chemokines were originally noted for their powerful ability to recruit immune cells; however, as research has advanced, it has become increasingly evident that their role in peripheral nerve repair has been underestimated. In this review, we provide the first comprehensive overview of chemokine expression and activity during peripheral nerve injury and regeneration. We summarize the existing literature on chemokine family members, detailing their expression patterns and localization in injured nerves to facilitate further mechanistic investigations. For chemokines that remain controversial, such as CXCL1 and CCL2, we critically examine experimental methodologies and discuss factors underlying conflicting results, ultimately affirming their contributions to promoting nerve repair. Importantly, we highlight the dual nature of chemokines: in the early stages of injury, they initiate reparative responses, activate Schwann cells, regulate Wallerian degeneration, and support nerve recovery; but when the axons are connected and the repair enters the later stages, their persistent proinflammatory effects during later stages may impede the healing process. Additionally, we emphasize that certain chemokines, including CXCL5, CXCL12, and CCL2, can act directly on neurons/axons, thereby accelerating axonal regeneration. Future research should focus on precisely mapping the localization and temporal expression profiles of these chemokines and exploring therapeutic approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信