用机器学习原子间电位研究显式溶剂中的激发态非绝热动力学。

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Maximilian X Tiefenbacher, Brigitta Bachmair, Cheng Giuseppe Chen, Julia Westermayr, Philipp Marquetand, Johannes C B Dietschreit, Leticia González
{"title":"用机器学习原子间电位研究显式溶剂中的激发态非绝热动力学。","authors":"Maximilian X Tiefenbacher, Brigitta Bachmair, Cheng Giuseppe Chen, Julia Westermayr, Philipp Marquetand, Johannes C B Dietschreit, Leticia González","doi":"10.1039/d5dd00044k","DOIUrl":null,"url":null,"abstract":"<p><p>Excited-state nonadiabatic simulations with quantum mechanics/molecular mechanics (QM/MM) are essential to understand photoinduced processes in explicit environments. However, the high computational cost of the underlying quantum chemical calculations limits its application in combination with trajectory surface hopping methods. Here, we use FieldSchNet, a machine-learned interatomic potential capable of incorporating electric field effects into the electronic states, to replace traditional QM/MM electrostatic embedding with its ML/MM counterpart for nonadiabatic excited state trajectories. The developed method is applied to furan in water, including five coupled singlet states. Our results demonstrate that with sufficiently curated training data, the ML/MM model reproduces the electronic kinetics and structural rearrangements of QM/MM surface hopping reference simulations. Furthermore, we identify performance metrics that provide robust and interpretable validation of model accuracy.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060776/pdf/","citationCount":"0","resultStr":"{\"title\":\"Excited-state nonadiabatic dynamics in explicit solvent using machine learned interatomic potentials.\",\"authors\":\"Maximilian X Tiefenbacher, Brigitta Bachmair, Cheng Giuseppe Chen, Julia Westermayr, Philipp Marquetand, Johannes C B Dietschreit, Leticia González\",\"doi\":\"10.1039/d5dd00044k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Excited-state nonadiabatic simulations with quantum mechanics/molecular mechanics (QM/MM) are essential to understand photoinduced processes in explicit environments. However, the high computational cost of the underlying quantum chemical calculations limits its application in combination with trajectory surface hopping methods. Here, we use FieldSchNet, a machine-learned interatomic potential capable of incorporating electric field effects into the electronic states, to replace traditional QM/MM electrostatic embedding with its ML/MM counterpart for nonadiabatic excited state trajectories. The developed method is applied to furan in water, including five coupled singlet states. Our results demonstrate that with sufficiently curated training data, the ML/MM model reproduces the electronic kinetics and structural rearrangements of QM/MM surface hopping reference simulations. Furthermore, we identify performance metrics that provide robust and interpretable validation of model accuracy.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060776/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5dd00044k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5dd00044k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子力学/分子力学(QM/MM)的激发态非绝热模拟是理解明确环境中光致过程的必要条件。然而,量子化学计算的高计算成本限制了其与轨迹表面跳变方法相结合的应用。在这里,我们使用FieldSchNet,一种机器学习的原子间势,能够将电场效应纳入电子状态,用ML/MM替代传统的QM/MM静电嵌入,用于非绝热激发态轨迹。将该方法应用于水中呋喃的五种耦合单重态。我们的研究结果表明,有了足够的训练数据,ML/MM模型再现了QM/MM表面跳跃参考模拟的电子动力学和结构重排。此外,我们确定的性能指标,提供稳健和可解释的验证模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Excited-state nonadiabatic dynamics in explicit solvent using machine learned interatomic potentials.

Excited-state nonadiabatic simulations with quantum mechanics/molecular mechanics (QM/MM) are essential to understand photoinduced processes in explicit environments. However, the high computational cost of the underlying quantum chemical calculations limits its application in combination with trajectory surface hopping methods. Here, we use FieldSchNet, a machine-learned interatomic potential capable of incorporating electric field effects into the electronic states, to replace traditional QM/MM electrostatic embedding with its ML/MM counterpart for nonadiabatic excited state trajectories. The developed method is applied to furan in water, including five coupled singlet states. Our results demonstrate that with sufficiently curated training data, the ML/MM model reproduces the electronic kinetics and structural rearrangements of QM/MM surface hopping reference simulations. Furthermore, we identify performance metrics that provide robust and interpretable validation of model accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信