{"title":"基于CT的栖息地放射组学和深度学习特征预测t1期肺腺癌淋巴血管浸润:一项多中心研究。","authors":"Pengliang Xu, Fandi Yao, Yunyu Xu, Huanming Yu, Wenhui Li, Shengxu Zhi, Xiuhua Peng","doi":"10.1016/j.acra.2025.04.005","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>The research aims to examine how CT-derived habitat radiomics can be used to predict lymphovascular invasion (LVI) in patients with T1-stage lung adenocarcinoma (LUAD), and compare its effectiveness to traditional radiomics and deep learning (DL) models.</p><p><strong>Materials and methods: </strong>We retrospectively analyzed 349 T1-stage LUAD patients from three centers from January 2021 to March 2024. The K-means algorithm was utilized to cluster CT images and apparent diffusion coefficient maps. Following features selection, we constructed three types of models, namely radiomics, habitat, and DL to identify patients with LVI. The evaluation of all models was conducted by employing the area under the receiver operating characteristic curve (AUC), calibration curves and decision curve analysis.</p><p><strong>Results: </strong>349 eligible patients were divided into an internal training set of 210 and an external test set of 139. We identified four distinct habitats, with the AUC for the overall habitat area outperforming that of the four sub-areas. Within the test set, the habitat model reached a higher AUC of 0.941 in contrast to the radiomics model at 0.918 and the deep learning model at 0.896.</p><p><strong>Conclusion: </strong>CT-based habitat radiomics shows promise in predicting LVI in T1-stage LUAD patients, with the habitat signature demonstrating superior performance and significant advantages in identifying patients who are LVI-positive.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Habitat Radiomics and Deep Learning Features Based on CT for Predicting Lymphovascular Invasion in T1-stage Lung Adenocarcinoma: A Multicenter Study.\",\"authors\":\"Pengliang Xu, Fandi Yao, Yunyu Xu, Huanming Yu, Wenhui Li, Shengxu Zhi, Xiuhua Peng\",\"doi\":\"10.1016/j.acra.2025.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Rationale and objectives: </strong>The research aims to examine how CT-derived habitat radiomics can be used to predict lymphovascular invasion (LVI) in patients with T1-stage lung adenocarcinoma (LUAD), and compare its effectiveness to traditional radiomics and deep learning (DL) models.</p><p><strong>Materials and methods: </strong>We retrospectively analyzed 349 T1-stage LUAD patients from three centers from January 2021 to March 2024. The K-means algorithm was utilized to cluster CT images and apparent diffusion coefficient maps. Following features selection, we constructed three types of models, namely radiomics, habitat, and DL to identify patients with LVI. The evaluation of all models was conducted by employing the area under the receiver operating characteristic curve (AUC), calibration curves and decision curve analysis.</p><p><strong>Results: </strong>349 eligible patients were divided into an internal training set of 210 and an external test set of 139. We identified four distinct habitats, with the AUC for the overall habitat area outperforming that of the four sub-areas. Within the test set, the habitat model reached a higher AUC of 0.941 in contrast to the radiomics model at 0.918 and the deep learning model at 0.896.</p><p><strong>Conclusion: </strong>CT-based habitat radiomics shows promise in predicting LVI in T1-stage LUAD patients, with the habitat signature demonstrating superior performance and significant advantages in identifying patients who are LVI-positive.</p>\",\"PeriodicalId\":50928,\"journal\":{\"name\":\"Academic Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.acra.2025.04.005\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.04.005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Habitat Radiomics and Deep Learning Features Based on CT for Predicting Lymphovascular Invasion in T1-stage Lung Adenocarcinoma: A Multicenter Study.
Rationale and objectives: The research aims to examine how CT-derived habitat radiomics can be used to predict lymphovascular invasion (LVI) in patients with T1-stage lung adenocarcinoma (LUAD), and compare its effectiveness to traditional radiomics and deep learning (DL) models.
Materials and methods: We retrospectively analyzed 349 T1-stage LUAD patients from three centers from January 2021 to March 2024. The K-means algorithm was utilized to cluster CT images and apparent diffusion coefficient maps. Following features selection, we constructed three types of models, namely radiomics, habitat, and DL to identify patients with LVI. The evaluation of all models was conducted by employing the area under the receiver operating characteristic curve (AUC), calibration curves and decision curve analysis.
Results: 349 eligible patients were divided into an internal training set of 210 and an external test set of 139. We identified four distinct habitats, with the AUC for the overall habitat area outperforming that of the four sub-areas. Within the test set, the habitat model reached a higher AUC of 0.941 in contrast to the radiomics model at 0.918 and the deep learning model at 0.896.
Conclusion: CT-based habitat radiomics shows promise in predicting LVI in T1-stage LUAD patients, with the habitat signature demonstrating superior performance and significant advantages in identifying patients who are LVI-positive.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.