协调的作用:对各种基于任务的情景的系统分析。

Shao-Jun Xia, Liesbeth Vancoillie, Saman Sotoudeh-Paima, Mojtaba Zarei, Fong Chi Ho, Fakrul Islam Tushar, Xiaoyang Chen, Lavsen Dahal, Kyle J Lafata, Ehsan Abadi, Joseph Y Lo, Ehsan Samei
{"title":"协调的作用:对各种基于任务的情景的系统分析。","authors":"Shao-Jun Xia, Liesbeth Vancoillie, Saman Sotoudeh-Paima, Mojtaba Zarei, Fong Chi Ho, Fakrul Islam Tushar, Xiaoyang Chen, Lavsen Dahal, Kyle J Lafata, Ehsan Abadi, Joseph Y Lo, Ehsan Samei","doi":"10.1117/12.3047096","DOIUrl":null,"url":null,"abstract":"<p><p>In medical imaging, harmonization plays a crucial role in reducing variability arising from diverse imaging devices and protocols. Patient images obtained under different computed tomography (CT) scan conditions may show varying performance when analyzed using an artificial intelligence model or quantitative assessment. This necessitates the need for harmonization. Virtual imaging trial (VIT) through digital simulation can be used to develop and assess the effectiveness of harmonization models to minimize data variability. The purpose of this study was to assess the utility of a VIT platform for harmonization across a range of lung imaging scenarios. To ensure consistent and reliable analysis across different virtual imaging datasets, we conducted a multi-objective assessment encompassing three typical task-based scenarios: lung structure segmentation, chronic obstructive pulmonary disease (COPD) quantification, and lung nodule quantification. A physics-informed deep neural network was applied as the unified harmonization model for all three tasks. Evaluation results before and after harmonization reveal three findings: 1) modestly improved Dice scores and reduced Hausdorff Distances at 95th Percentile in lung structure segmentation; 2) decreased variation in biomarkers and radiomics features in COPD quantification; and 3) increased number of radiomics features with high intraclass correlation coefficient in lung nodule quantification. The results demonstrate the significant potential of harmonization across various task-based scenarios and provide a benchmark for the design of efficient harmonizers.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13405 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035823/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role of Harmonization: A Systematic Analysis of Various Task-based Scenarios.\",\"authors\":\"Shao-Jun Xia, Liesbeth Vancoillie, Saman Sotoudeh-Paima, Mojtaba Zarei, Fong Chi Ho, Fakrul Islam Tushar, Xiaoyang Chen, Lavsen Dahal, Kyle J Lafata, Ehsan Abadi, Joseph Y Lo, Ehsan Samei\",\"doi\":\"10.1117/12.3047096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In medical imaging, harmonization plays a crucial role in reducing variability arising from diverse imaging devices and protocols. Patient images obtained under different computed tomography (CT) scan conditions may show varying performance when analyzed using an artificial intelligence model or quantitative assessment. This necessitates the need for harmonization. Virtual imaging trial (VIT) through digital simulation can be used to develop and assess the effectiveness of harmonization models to minimize data variability. The purpose of this study was to assess the utility of a VIT platform for harmonization across a range of lung imaging scenarios. To ensure consistent and reliable analysis across different virtual imaging datasets, we conducted a multi-objective assessment encompassing three typical task-based scenarios: lung structure segmentation, chronic obstructive pulmonary disease (COPD) quantification, and lung nodule quantification. A physics-informed deep neural network was applied as the unified harmonization model for all three tasks. Evaluation results before and after harmonization reveal three findings: 1) modestly improved Dice scores and reduced Hausdorff Distances at 95th Percentile in lung structure segmentation; 2) decreased variation in biomarkers and radiomics features in COPD quantification; and 3) increased number of radiomics features with high intraclass correlation coefficient in lung nodule quantification. The results demonstrate the significant potential of harmonization across various task-based scenarios and provide a benchmark for the design of efficient harmonizers.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"13405 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035823/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3047096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3047096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在医学成像中,协调在减少由不同成像设备和协议引起的可变性方面起着至关重要的作用。在使用人工智能模型或定量评估进行分析时,在不同计算机断层扫描(CT)条件下获得的患者图像可能显示不同的性能。这就需要进行协调。通过数字仿真的虚拟成像试验(VIT)可用于开发和评估协调模型的有效性,以最大限度地减少数据变异性。本研究的目的是评估VIT平台在协调一系列肺部成像场景中的效用。为了确保不同虚拟成像数据集分析的一致性和可靠性,我们进行了多目标评估,包括三个典型的基于任务的场景:肺结构分割、慢性阻塞性肺疾病(COPD)量化和肺结节量化。采用物理信息深度神经网络作为三种任务的统一协调模型。协调前后的评价结果有三个方面的发现:1)肺结构分割的Dice评分适度提高,Hausdorff距离在第95百分位处降低;2) COPD量化中生物标志物和放射组学特征的变化减小;3)增加了肺结节定量中具有高类内相关系数的放射组学特征。结果表明,在各种基于任务的场景中,协调具有巨大的潜力,并为高效协调器的设计提供了基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of Harmonization: A Systematic Analysis of Various Task-based Scenarios.

In medical imaging, harmonization plays a crucial role in reducing variability arising from diverse imaging devices and protocols. Patient images obtained under different computed tomography (CT) scan conditions may show varying performance when analyzed using an artificial intelligence model or quantitative assessment. This necessitates the need for harmonization. Virtual imaging trial (VIT) through digital simulation can be used to develop and assess the effectiveness of harmonization models to minimize data variability. The purpose of this study was to assess the utility of a VIT platform for harmonization across a range of lung imaging scenarios. To ensure consistent and reliable analysis across different virtual imaging datasets, we conducted a multi-objective assessment encompassing three typical task-based scenarios: lung structure segmentation, chronic obstructive pulmonary disease (COPD) quantification, and lung nodule quantification. A physics-informed deep neural network was applied as the unified harmonization model for all three tasks. Evaluation results before and after harmonization reveal three findings: 1) modestly improved Dice scores and reduced Hausdorff Distances at 95th Percentile in lung structure segmentation; 2) decreased variation in biomarkers and radiomics features in COPD quantification; and 3) increased number of radiomics features with high intraclass correlation coefficient in lung nodule quantification. The results demonstrate the significant potential of harmonization across various task-based scenarios and provide a benchmark for the design of efficient harmonizers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信