高斯图象等高线上的可展开逼近。

IF 6.5
Yuan-Yuan Cheng, Qing Fang, Ligang Liu, Xiao-Ming Fu
{"title":"高斯图象等高线上的可展开逼近。","authors":"Yuan-Yuan Cheng, Qing Fang, Ligang Liu, Xiao-Ming Fu","doi":"10.1109/TVCG.2025.3566887","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel method to generate developable approximations for triangular meshes. Instead of fitting the Gauss image using a geodesic circle in the local neighborhood, we apply a nonlinear dimensionality reduction method, called Isomap, to use a general curve on the sphere for fitting. This brings us a larger space to represent the Gauss image in the local neighborhood as a 1D structure. Specifically, each triangle is assigned a target normal after local fitting; then, we deform the mesh to approach the target normal globally. By iteratively performing fitting and deformation, we obtain the developable approximation. We demonstrate the feasibility and effectiveness of our method over various examples. Compared to the state-of-the-art methods, our results exhibit a higher fidelity to the input mesh while possessing more prominent and visually distinct undevelopable seam curves.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developable Approximation via Isomap on Gauss Image.\",\"authors\":\"Yuan-Yuan Cheng, Qing Fang, Ligang Liu, Xiao-Ming Fu\",\"doi\":\"10.1109/TVCG.2025.3566887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a novel method to generate developable approximations for triangular meshes. Instead of fitting the Gauss image using a geodesic circle in the local neighborhood, we apply a nonlinear dimensionality reduction method, called Isomap, to use a general curve on the sphere for fitting. This brings us a larger space to represent the Gauss image in the local neighborhood as a 1D structure. Specifically, each triangle is assigned a target normal after local fitting; then, we deform the mesh to approach the target normal globally. By iteratively performing fitting and deformation, we obtain the developable approximation. We demonstrate the feasibility and effectiveness of our method over various examples. Compared to the state-of-the-art methods, our results exhibit a higher fidelity to the input mesh while possessing more prominent and visually distinct undevelopable seam curves.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3566887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3566887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的方法来生成三角形网格的可展开逼近。我们不是使用局部邻域的测地线圆来拟合高斯图像,而是采用一种称为Isomap的非线性降维方法,在球体上使用一般曲线进行拟合。这为我们提供了更大的空间来将局部邻域中的高斯图像表示为一维结构。具体来说,每个三角形在局部拟合后分配一个目标法线;然后,我们对网格进行变形,使其全局逼近目标法线。通过迭代拟合和变形,得到了可展开的近似。通过实例验证了该方法的可行性和有效性。与最先进的方法相比,我们的结果对输入网格具有更高的保真度,同时具有更突出和视觉上明显的不可展开接缝曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developable Approximation via Isomap on Gauss Image.

We propose a novel method to generate developable approximations for triangular meshes. Instead of fitting the Gauss image using a geodesic circle in the local neighborhood, we apply a nonlinear dimensionality reduction method, called Isomap, to use a general curve on the sphere for fitting. This brings us a larger space to represent the Gauss image in the local neighborhood as a 1D structure. Specifically, each triangle is assigned a target normal after local fitting; then, we deform the mesh to approach the target normal globally. By iteratively performing fitting and deformation, we obtain the developable approximation. We demonstrate the feasibility and effectiveness of our method over various examples. Compared to the state-of-the-art methods, our results exhibit a higher fidelity to the input mesh while possessing more prominent and visually distinct undevelopable seam curves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信