K Sakamoto, K Okabayashi, R Seishima, K Shigeta, H Kiyohara, Y Mikami, T Kanai, Y Kitagawa
{"title":"难治性溃疡性结肠炎手术的放射组学预测。","authors":"K Sakamoto, K Okabayashi, R Seishima, K Shigeta, H Kiyohara, Y Mikami, T Kanai, Y Kitagawa","doi":"10.1007/s10151-025-03139-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The surgeries in drug-resistant ulcerative colitis are determined by complex factors. This study evaluated the predictive performance of radiomics analysis on the basis of whether patients with ulcerative colitis in hospital were in the surgical or medical treatment group by discharge from hospital.</p><p><strong>Methods: </strong>This single-center retrospective cohort study used CT at admission of patients with US admitted from 2015 to 2022. The target of prediction was whether the patient would undergo surgery by the time of discharge. Radiomics features were extracted using the rectal wall at the level of the tailbone tip of the CT as the region of interest. CT data were randomly classified into a training cohort and a validation cohort, and LASSO regression was performed using the training cohort to create a formula for calculating the radiomics score.</p><p><strong>Results: </strong>A total of 147 patients were selected, and data from 184 CT scans were collected. Data from 157 CT scans matched the selection criteria and were included. Five features were used for the radiomics score. Univariate logistic regression analysis of clinical information detected a significant influence of severity (p < 0.001), number of drugs used until surgery (p < 0.001), Lichtiger score (p = 0.024), and hemoglobin (p = 0.010). Using a nomogram combining these items, we found that the discriminatory power in the surgery and medical treatment groups was AUC 0.822 (95% confidence interval (CI) 0.841-0.951) for the training cohort and AUC 0.868 (95% CI 0.729-1.000) for the validation cohort, indicating a good ability to discriminate the outcomes.</p><p><strong>Conclusions: </strong>Radiomics analysis of CT images of patients with US at the time of admission, combined with clinical data, showed high predictive ability regarding a treatment strategy of surgery or medical treatment.</p>","PeriodicalId":51192,"journal":{"name":"Techniques in Coloproctology","volume":"29 1","pages":"113"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065716/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiomics prediction of surgery in ulcerative colitis refractory to medical treatment.\",\"authors\":\"K Sakamoto, K Okabayashi, R Seishima, K Shigeta, H Kiyohara, Y Mikami, T Kanai, Y Kitagawa\",\"doi\":\"10.1007/s10151-025-03139-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The surgeries in drug-resistant ulcerative colitis are determined by complex factors. This study evaluated the predictive performance of radiomics analysis on the basis of whether patients with ulcerative colitis in hospital were in the surgical or medical treatment group by discharge from hospital.</p><p><strong>Methods: </strong>This single-center retrospective cohort study used CT at admission of patients with US admitted from 2015 to 2022. The target of prediction was whether the patient would undergo surgery by the time of discharge. Radiomics features were extracted using the rectal wall at the level of the tailbone tip of the CT as the region of interest. CT data were randomly classified into a training cohort and a validation cohort, and LASSO regression was performed using the training cohort to create a formula for calculating the radiomics score.</p><p><strong>Results: </strong>A total of 147 patients were selected, and data from 184 CT scans were collected. Data from 157 CT scans matched the selection criteria and were included. Five features were used for the radiomics score. Univariate logistic regression analysis of clinical information detected a significant influence of severity (p < 0.001), number of drugs used until surgery (p < 0.001), Lichtiger score (p = 0.024), and hemoglobin (p = 0.010). Using a nomogram combining these items, we found that the discriminatory power in the surgery and medical treatment groups was AUC 0.822 (95% confidence interval (CI) 0.841-0.951) for the training cohort and AUC 0.868 (95% CI 0.729-1.000) for the validation cohort, indicating a good ability to discriminate the outcomes.</p><p><strong>Conclusions: </strong>Radiomics analysis of CT images of patients with US at the time of admission, combined with clinical data, showed high predictive ability regarding a treatment strategy of surgery or medical treatment.</p>\",\"PeriodicalId\":51192,\"journal\":{\"name\":\"Techniques in Coloproctology\",\"volume\":\"29 1\",\"pages\":\"113\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065716/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Techniques in Coloproctology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10151-025-03139-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Techniques in Coloproctology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10151-025-03139-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Radiomics prediction of surgery in ulcerative colitis refractory to medical treatment.
Background: The surgeries in drug-resistant ulcerative colitis are determined by complex factors. This study evaluated the predictive performance of radiomics analysis on the basis of whether patients with ulcerative colitis in hospital were in the surgical or medical treatment group by discharge from hospital.
Methods: This single-center retrospective cohort study used CT at admission of patients with US admitted from 2015 to 2022. The target of prediction was whether the patient would undergo surgery by the time of discharge. Radiomics features were extracted using the rectal wall at the level of the tailbone tip of the CT as the region of interest. CT data were randomly classified into a training cohort and a validation cohort, and LASSO regression was performed using the training cohort to create a formula for calculating the radiomics score.
Results: A total of 147 patients were selected, and data from 184 CT scans were collected. Data from 157 CT scans matched the selection criteria and were included. Five features were used for the radiomics score. Univariate logistic regression analysis of clinical information detected a significant influence of severity (p < 0.001), number of drugs used until surgery (p < 0.001), Lichtiger score (p = 0.024), and hemoglobin (p = 0.010). Using a nomogram combining these items, we found that the discriminatory power in the surgery and medical treatment groups was AUC 0.822 (95% confidence interval (CI) 0.841-0.951) for the training cohort and AUC 0.868 (95% CI 0.729-1.000) for the validation cohort, indicating a good ability to discriminate the outcomes.
Conclusions: Radiomics analysis of CT images of patients with US at the time of admission, combined with clinical data, showed high predictive ability regarding a treatment strategy of surgery or medical treatment.
期刊介绍:
Techniques in Coloproctology is an international journal fully devoted to diagnostic and operative procedures carried out in the management of colorectal diseases. Imaging, clinical physiology, laparoscopy, open abdominal surgery and proctoperineology are the main topics covered by the journal. Reviews, original articles, technical notes and short communications with many detailed illustrations render this publication indispensable for coloproctologists and related specialists. Both surgeons and gastroenterologists are represented on the distinguished Editorial Board, together with pathologists, radiologists and basic scientists from all over the world. The journal is strongly recommended to those who wish to be updated on recent developments in the field, and improve the standards of their work.
Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1965 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted. Reports of animal experiments must state that the Principles of Laboratory Animal Care (NIH publication no. 86-23 revised 1985) were followed as were applicable national laws (e.g. the current version of the German Law on the Protection of Animals). The Editor-in-Chief reserves the right to reject manuscripts that do not comply with the above-mentioned requirements. Authors will be held responsible for false statements or for failure to fulfill such requirements.