Iuria Betco, Ana Isabel Ribeiro, David S Vale, Luis Encalada-Abarca, Cláudia M Viana, Jorge Rocha
{"title":"在葡萄牙里斯本使用基于词典的方法进行情感分析。","authors":"Iuria Betco, Ana Isabel Ribeiro, David S Vale, Luis Encalada-Abarca, Cláudia M Viana, Jorge Rocha","doi":"10.4081/gh.2025.1344","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in digital sensors and Information flow have created an abundance of data generated by users under various emotional states in different situations. Although this opens up a new facet in spatial research, the large amount of data makes it difficult to analyze and obtain complete and comprehensive information leading to an increase in the demand for sentiment analysis. In this study, the Canadian National Research Council (NRC) of Sentiment and Emotion Lexicon (EmoLex) was used, based on data from the social network Twitter (now X), thus enabling the identification of the places in Lisbon where both positive and negative sentiment prevails. From the results obtained, the Portuguese are happy in spaces associated with leisure and consumption, such as museums, event venues, gardens, shopping centres, stores, and restaurants. The high score of words associated with negative sentiment have more bias, since the lexicon sometimes has difficulties to identify the context in which the word appears, ending up giving it a negative score (e.g., war, terminal).</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment analysis using a lexicon-based approach in Lisbon, Portugal.\",\"authors\":\"Iuria Betco, Ana Isabel Ribeiro, David S Vale, Luis Encalada-Abarca, Cláudia M Viana, Jorge Rocha\",\"doi\":\"10.4081/gh.2025.1344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in digital sensors and Information flow have created an abundance of data generated by users under various emotional states in different situations. Although this opens up a new facet in spatial research, the large amount of data makes it difficult to analyze and obtain complete and comprehensive information leading to an increase in the demand for sentiment analysis. In this study, the Canadian National Research Council (NRC) of Sentiment and Emotion Lexicon (EmoLex) was used, based on data from the social network Twitter (now X), thus enabling the identification of the places in Lisbon where both positive and negative sentiment prevails. From the results obtained, the Portuguese are happy in spaces associated with leisure and consumption, such as museums, event venues, gardens, shopping centres, stores, and restaurants. The high score of words associated with negative sentiment have more bias, since the lexicon sometimes has difficulties to identify the context in which the word appears, ending up giving it a negative score (e.g., war, terminal).</p>\",\"PeriodicalId\":56260,\"journal\":{\"name\":\"Geospatial Health\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geospatial Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4081/gh.2025.1344\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geospatial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4081/gh.2025.1344","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Sentiment analysis using a lexicon-based approach in Lisbon, Portugal.
Advances in digital sensors and Information flow have created an abundance of data generated by users under various emotional states in different situations. Although this opens up a new facet in spatial research, the large amount of data makes it difficult to analyze and obtain complete and comprehensive information leading to an increase in the demand for sentiment analysis. In this study, the Canadian National Research Council (NRC) of Sentiment and Emotion Lexicon (EmoLex) was used, based on data from the social network Twitter (now X), thus enabling the identification of the places in Lisbon where both positive and negative sentiment prevails. From the results obtained, the Portuguese are happy in spaces associated with leisure and consumption, such as museums, event venues, gardens, shopping centres, stores, and restaurants. The high score of words associated with negative sentiment have more bias, since the lexicon sometimes has difficulties to identify the context in which the word appears, ending up giving it a negative score (e.g., war, terminal).
期刊介绍:
The focus of the journal is on all aspects of the application of geographical information systems, remote sensing, global positioning systems, spatial statistics and other geospatial tools in human and veterinary health. The journal publishes two issues per year.