Taeok Kim, Eun Jung Jeon, Kil Koang Kwon, Minji Ko, Ha-Neul Kim, Seong Keun Kim, Eugene Rha, Jonghyeok Shin, Haseong Kim, Dae-Hee Lee, Bong Hyun Sung, Soo-Jung Kim, Hyewon Lee, Seung-Goo Lee
{"title":"无细胞生物传感器,自动声学液体处理,用于快速和可扩展表征微晶纤维素上的纤维素生物水解酶。","authors":"Taeok Kim, Eun Jung Jeon, Kil Koang Kwon, Minji Ko, Ha-Neul Kim, Seong Keun Kim, Eugene Rha, Jonghyeok Shin, Haseong Kim, Dae-Hee Lee, Bong Hyun Sung, Soo-Jung Kim, Hyewon Lee, Seung-Goo Lee","doi":"10.1093/synbio/ysaf005","DOIUrl":null,"url":null,"abstract":"<p><p>Engineering enzymes to degrade solid substrates, such as crystalline cellulose from paper sludge or microplastics in sewage sludge, presents challenges for high-throughput screening (HTS), as solid substrates are not readily accessible in cell-based biosensor systems. To address this challenge, we developed a cell-free cellobiose-detectable biosensor (CB-biosensor) for rapid characterization of cellobiohydrolase (CBH) activity, enabling direct detection of hydrolysis products without cellular constraints. The CB-biosensor demonstrates higher sensitivity than conventional assays and distinguishes between CBH subtypes (CBHI and CBHII) based on their modes of action. Integration with the Echo 525 liquid handler enables precise and reproducible sample processing, with fluorescence signals from automated preparations comparable to manual experiments. Furthermore, assay volumes can be reduced to just a few microlitres-impractical with manual methods. This cell-free CB-biosensor with Echo 525 minimizes reagent consumption, accelerates testing, and facilitates reliable large-scale screening. These findings highlight its potential to overcome current HTS limitations, advancing enzyme screening and accelerating the Design-Build-Test-Learn cycle for sustainable biomanufacturing.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"10 1","pages":"ysaf005"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006790/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cell-free biosensor with automated acoustic liquid handling for rapid and scalable characterization of cellobiohydrolases on microcrystalline cellulose.\",\"authors\":\"Taeok Kim, Eun Jung Jeon, Kil Koang Kwon, Minji Ko, Ha-Neul Kim, Seong Keun Kim, Eugene Rha, Jonghyeok Shin, Haseong Kim, Dae-Hee Lee, Bong Hyun Sung, Soo-Jung Kim, Hyewon Lee, Seung-Goo Lee\",\"doi\":\"10.1093/synbio/ysaf005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Engineering enzymes to degrade solid substrates, such as crystalline cellulose from paper sludge or microplastics in sewage sludge, presents challenges for high-throughput screening (HTS), as solid substrates are not readily accessible in cell-based biosensor systems. To address this challenge, we developed a cell-free cellobiose-detectable biosensor (CB-biosensor) for rapid characterization of cellobiohydrolase (CBH) activity, enabling direct detection of hydrolysis products without cellular constraints. The CB-biosensor demonstrates higher sensitivity than conventional assays and distinguishes between CBH subtypes (CBHI and CBHII) based on their modes of action. Integration with the Echo 525 liquid handler enables precise and reproducible sample processing, with fluorescence signals from automated preparations comparable to manual experiments. Furthermore, assay volumes can be reduced to just a few microlitres-impractical with manual methods. This cell-free CB-biosensor with Echo 525 minimizes reagent consumption, accelerates testing, and facilitates reliable large-scale screening. These findings highlight its potential to overcome current HTS limitations, advancing enzyme screening and accelerating the Design-Build-Test-Learn cycle for sustainable biomanufacturing.</p>\",\"PeriodicalId\":74902,\"journal\":{\"name\":\"Synthetic biology (Oxford, England)\",\"volume\":\"10 1\",\"pages\":\"ysaf005\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006790/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic biology (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/synbio/ysaf005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysaf005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Cell-free biosensor with automated acoustic liquid handling for rapid and scalable characterization of cellobiohydrolases on microcrystalline cellulose.
Engineering enzymes to degrade solid substrates, such as crystalline cellulose from paper sludge or microplastics in sewage sludge, presents challenges for high-throughput screening (HTS), as solid substrates are not readily accessible in cell-based biosensor systems. To address this challenge, we developed a cell-free cellobiose-detectable biosensor (CB-biosensor) for rapid characterization of cellobiohydrolase (CBH) activity, enabling direct detection of hydrolysis products without cellular constraints. The CB-biosensor demonstrates higher sensitivity than conventional assays and distinguishes between CBH subtypes (CBHI and CBHII) based on their modes of action. Integration with the Echo 525 liquid handler enables precise and reproducible sample processing, with fluorescence signals from automated preparations comparable to manual experiments. Furthermore, assay volumes can be reduced to just a few microlitres-impractical with manual methods. This cell-free CB-biosensor with Echo 525 minimizes reagent consumption, accelerates testing, and facilitates reliable large-scale screening. These findings highlight its potential to overcome current HTS limitations, advancing enzyme screening and accelerating the Design-Build-Test-Learn cycle for sustainable biomanufacturing.