{"title":"人工智能在CT血管造影中检测冠状动脉狭窄和钙化斑块:一项系统综述和荟萃分析。","authors":"Ming Du, Shuang He, Jiaojiao Liu, Long Yuan","doi":"10.1016/j.acra.2025.03.054","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aimed to evaluate the diagnostic performance of artificial intelligence (AI) in detecting coronary artery stenosis and calcified plaque on CT angiography (CTA), comparing its diagnostic performance with that of radiologists.</p><p><strong>Methods: </strong>A thorough search of the literature was performed using PubMed, Web of Science, and Embase, focusing on studies published until October 2024. Studies were included if they evaluated AI models in detecting coronary artery stenosis and calcified plaque on CTA. A bivariate random-effects model was employed to determine combined sensitivity and specificity. Study heterogeneity was assessed using I<sup>2</sup> statistics. The risk of bias was assessed using the revised quality assessment of diagnostic accuracy studies-2 tool, and the evidence level was graded using the Grading of Recommendations Assessment, Development and Evalutiuon (GRADE) system.</p><p><strong>Results: </strong>Out of 1071 initially identified studies, 17 studies with 5560 patients and images were ultimately included for the final analysis. For coronary artery stenosis ≥50%, AI showed a sensitivity of 0.92 (95% CI: 0.88-0.95), specificity of 0.87 (95% CI: 0.80-0.92), and AUC of 0.96 (95% CI: 0.94-0.97), outperforming radiologists with sensitivity of 0.85 (95% CI: 0.67-0.94), specificity of 0.84 (95% CI: 0.62-0.94), and AUC of 0.91 (95% CI: 0.89-0.93). For stenosis ≥70%, AI achieved a sensitivity of 0.88 (95% CI: 0.70-0.96), specificity of 0.96 (95% CI: 0.90-0.99), and AUC of 0.98 (95% CI: 0.96-0.99). In calcified plaque detection, AI demonstrated a sensitivity of 0.93 (95% CI: 0.84-0.97), specificity of 0.94 (95% CI: 0.88-0.96), and AUC of 0.98 (95% CI: 0.96-0.99).\"</p><p><strong>Conclusion: </strong>AI-based CT demonstrated superior diagnostic performance compared to clinicians in identifying ≥50% stenosis in coronary arteries and showed excellent diagnostic performance in recognizing ≥70% coronary artery stenosis and calcified plaque. However, limitations include retrospective study designs and heterogeneity in CTA technologies. Further external validation through prospective, multicenter trials is required to confirm these findings.</p><p><strong>Data availability statement: </strong>The original findings of this research are included in the article. For additional inquiries, please contact the corresponding authors.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in CT Angiography for the Detection of Coronary Artery Stenosis and Calcified Plaque: A Systematic Review and Meta-analysis.\",\"authors\":\"Ming Du, Shuang He, Jiaojiao Liu, Long Yuan\",\"doi\":\"10.1016/j.acra.2025.03.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We aimed to evaluate the diagnostic performance of artificial intelligence (AI) in detecting coronary artery stenosis and calcified plaque on CT angiography (CTA), comparing its diagnostic performance with that of radiologists.</p><p><strong>Methods: </strong>A thorough search of the literature was performed using PubMed, Web of Science, and Embase, focusing on studies published until October 2024. Studies were included if they evaluated AI models in detecting coronary artery stenosis and calcified plaque on CTA. A bivariate random-effects model was employed to determine combined sensitivity and specificity. Study heterogeneity was assessed using I<sup>2</sup> statistics. The risk of bias was assessed using the revised quality assessment of diagnostic accuracy studies-2 tool, and the evidence level was graded using the Grading of Recommendations Assessment, Development and Evalutiuon (GRADE) system.</p><p><strong>Results: </strong>Out of 1071 initially identified studies, 17 studies with 5560 patients and images were ultimately included for the final analysis. For coronary artery stenosis ≥50%, AI showed a sensitivity of 0.92 (95% CI: 0.88-0.95), specificity of 0.87 (95% CI: 0.80-0.92), and AUC of 0.96 (95% CI: 0.94-0.97), outperforming radiologists with sensitivity of 0.85 (95% CI: 0.67-0.94), specificity of 0.84 (95% CI: 0.62-0.94), and AUC of 0.91 (95% CI: 0.89-0.93). For stenosis ≥70%, AI achieved a sensitivity of 0.88 (95% CI: 0.70-0.96), specificity of 0.96 (95% CI: 0.90-0.99), and AUC of 0.98 (95% CI: 0.96-0.99). In calcified plaque detection, AI demonstrated a sensitivity of 0.93 (95% CI: 0.84-0.97), specificity of 0.94 (95% CI: 0.88-0.96), and AUC of 0.98 (95% CI: 0.96-0.99).\\\"</p><p><strong>Conclusion: </strong>AI-based CT demonstrated superior diagnostic performance compared to clinicians in identifying ≥50% stenosis in coronary arteries and showed excellent diagnostic performance in recognizing ≥70% coronary artery stenosis and calcified plaque. However, limitations include retrospective study designs and heterogeneity in CTA technologies. Further external validation through prospective, multicenter trials is required to confirm these findings.</p><p><strong>Data availability statement: </strong>The original findings of this research are included in the article. For additional inquiries, please contact the corresponding authors.</p>\",\"PeriodicalId\":50928,\"journal\":{\"name\":\"Academic Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.acra.2025.03.054\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.03.054","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Artificial Intelligence in CT Angiography for the Detection of Coronary Artery Stenosis and Calcified Plaque: A Systematic Review and Meta-analysis.
Purpose: We aimed to evaluate the diagnostic performance of artificial intelligence (AI) in detecting coronary artery stenosis and calcified plaque on CT angiography (CTA), comparing its diagnostic performance with that of radiologists.
Methods: A thorough search of the literature was performed using PubMed, Web of Science, and Embase, focusing on studies published until October 2024. Studies were included if they evaluated AI models in detecting coronary artery stenosis and calcified plaque on CTA. A bivariate random-effects model was employed to determine combined sensitivity and specificity. Study heterogeneity was assessed using I2 statistics. The risk of bias was assessed using the revised quality assessment of diagnostic accuracy studies-2 tool, and the evidence level was graded using the Grading of Recommendations Assessment, Development and Evalutiuon (GRADE) system.
Results: Out of 1071 initially identified studies, 17 studies with 5560 patients and images were ultimately included for the final analysis. For coronary artery stenosis ≥50%, AI showed a sensitivity of 0.92 (95% CI: 0.88-0.95), specificity of 0.87 (95% CI: 0.80-0.92), and AUC of 0.96 (95% CI: 0.94-0.97), outperforming radiologists with sensitivity of 0.85 (95% CI: 0.67-0.94), specificity of 0.84 (95% CI: 0.62-0.94), and AUC of 0.91 (95% CI: 0.89-0.93). For stenosis ≥70%, AI achieved a sensitivity of 0.88 (95% CI: 0.70-0.96), specificity of 0.96 (95% CI: 0.90-0.99), and AUC of 0.98 (95% CI: 0.96-0.99). In calcified plaque detection, AI demonstrated a sensitivity of 0.93 (95% CI: 0.84-0.97), specificity of 0.94 (95% CI: 0.88-0.96), and AUC of 0.98 (95% CI: 0.96-0.99)."
Conclusion: AI-based CT demonstrated superior diagnostic performance compared to clinicians in identifying ≥50% stenosis in coronary arteries and showed excellent diagnostic performance in recognizing ≥70% coronary artery stenosis and calcified plaque. However, limitations include retrospective study designs and heterogeneity in CTA technologies. Further external validation through prospective, multicenter trials is required to confirm these findings.
Data availability statement: The original findings of this research are included in the article. For additional inquiries, please contact the corresponding authors.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.