通过脑电图预测注视和凝视位置。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yoelvis Moreno-Alcayde, V Javier Traver, Luis A Leiva
{"title":"通过脑电图预测注视和凝视位置。","authors":"Yoelvis Moreno-Alcayde, V Javier Traver, Luis A Leiva","doi":"10.1007/s11517-025-03362-6","DOIUrl":null,"url":null,"abstract":"<p><p>Brain signals carry cognitive information that can be relevant in downstream tasks, but what about eye-gaze? Although this can be estimated with eye-trackers, it can be very convenient in practice to do it without extra equipment. We consider the challenging tasks of fixation prediction and gaze estimation from electroencephalography (EEG) using deep learning models. We argue that there are three critical design criteria when designing neural architectures for EEG: (1) the spatial and temporal dimensions of the data, (2) the local vs global nature of the data processing, and (3) the overall structure and order with which the steps (1) and (2) are orchestrated. We propose two model architectures, based on Transformers and LSTMs, with different variants in this large design space, and compare them with recent state-of-the-art (SOTA) approaches under two constraints: reduced EEG signal length and reduced set of EEG channels. Our Transformer-based model outperforms the LSTM-only model, but it turns out to be more sensitive with short signal lengths and with less number of channels. Interestingly, our results are similar or slightly better than SOTA, and the models are trained from scratch (i.e., without pre-training or fine-tuning). Our findings provide useful insights for advancing in eye-from-EEG tasks.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting fixations and gaze location from EEG.\",\"authors\":\"Yoelvis Moreno-Alcayde, V Javier Traver, Luis A Leiva\",\"doi\":\"10.1007/s11517-025-03362-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain signals carry cognitive information that can be relevant in downstream tasks, but what about eye-gaze? Although this can be estimated with eye-trackers, it can be very convenient in practice to do it without extra equipment. We consider the challenging tasks of fixation prediction and gaze estimation from electroencephalography (EEG) using deep learning models. We argue that there are three critical design criteria when designing neural architectures for EEG: (1) the spatial and temporal dimensions of the data, (2) the local vs global nature of the data processing, and (3) the overall structure and order with which the steps (1) and (2) are orchestrated. We propose two model architectures, based on Transformers and LSTMs, with different variants in this large design space, and compare them with recent state-of-the-art (SOTA) approaches under two constraints: reduced EEG signal length and reduced set of EEG channels. Our Transformer-based model outperforms the LSTM-only model, but it turns out to be more sensitive with short signal lengths and with less number of channels. Interestingly, our results are similar or slightly better than SOTA, and the models are trained from scratch (i.e., without pre-training or fine-tuning). Our findings provide useful insights for advancing in eye-from-EEG tasks.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03362-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03362-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

大脑信号携带着与下游任务相关的认知信息,但目光呢?虽然这可以用眼动仪来估计,但在实践中,不需要额外的设备就可以非常方便地做到这一点。我们考虑使用深度学习模型从脑电图(EEG)中进行注视预测和凝视估计的挑战性任务。我们认为,在为EEG设计神经架构时,有三个关键的设计标准:(1)数据的空间和时间维度,(2)数据处理的局部与全局性质,以及(3)步骤(1)和(2)编排的整体结构和顺序。我们提出了基于变压器和lstm的两种模型架构,在这个大的设计空间中具有不同的变体,并在两个约束条件下将它们与最新的最先进(SOTA)方法进行比较:减少脑电信号长度和减少脑电信号通道集。我们的基于变压器的模型优于仅lstm的模型,但事实证明,它在信号长度较短和通道数量较少的情况下更敏感。有趣的是,我们的结果与SOTA相似或略好,并且模型是从头开始训练的(即,没有预训练或微调)。我们的发现为推进眼- eeg任务提供了有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting fixations and gaze location from EEG.

Brain signals carry cognitive information that can be relevant in downstream tasks, but what about eye-gaze? Although this can be estimated with eye-trackers, it can be very convenient in practice to do it without extra equipment. We consider the challenging tasks of fixation prediction and gaze estimation from electroencephalography (EEG) using deep learning models. We argue that there are three critical design criteria when designing neural architectures for EEG: (1) the spatial and temporal dimensions of the data, (2) the local vs global nature of the data processing, and (3) the overall structure and order with which the steps (1) and (2) are orchestrated. We propose two model architectures, based on Transformers and LSTMs, with different variants in this large design space, and compare them with recent state-of-the-art (SOTA) approaches under two constraints: reduced EEG signal length and reduced set of EEG channels. Our Transformer-based model outperforms the LSTM-only model, but it turns out to be more sensitive with short signal lengths and with less number of channels. Interestingly, our results are similar or slightly better than SOTA, and the models are trained from scratch (i.e., without pre-training or fine-tuning). Our findings provide useful insights for advancing in eye-from-EEG tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信