Sarah Rathnam, Sonali Parbhoo, Siddharth Swaroop, Weiwei Pan, Susan A Murphy, Finale Doshi-Velez
{"title":"重新思考折扣正则化:强化学习中正则化的新解释、意外后果和解决方案。","authors":"Sarah Rathnam, Sonali Parbhoo, Siddharth Swaroop, Weiwei Pan, Susan A Murphy, Finale Doshi-Velez","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Discount regularization, using a shorter planning horizon when calculating the optimal policy, is a popular choice to avoid overfitting when faced with sparse or noisy data. It is commonly interpreted as de-emphasizing or ignoring delayed effects. In this paper, we prove two alternative views of discount regularization that expose unintended consequences and motivate novel regularization methods. In model-based RL, planning under a lower discount factor acts like a prior with stronger regularization on state-action pairs with more transition data. This leads to poor performance when the transition matrix is estimated from data sets with uneven amounts of data across state-action pairs. In model-free RL, discount regularization equates to planning using a weighted average Bellman update, where the agent plans as if the values of all state-action pairs are closer than implied by the data. Our equivalence theorems motivate simple methods that generalize discount regularization by setting parameters locally for individual state-action pairs rather than globally. We demonstrate the failures of discount regularization and how we remedy them using our state-action-specific methods across empirical examples with both tabular and continuous state spaces.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"25 ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058221/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rethinking Discount Regularization: New Interpretations, Unintended Consequences, and Solutions for Regularization in Reinforcement Learning.\",\"authors\":\"Sarah Rathnam, Sonali Parbhoo, Siddharth Swaroop, Weiwei Pan, Susan A Murphy, Finale Doshi-Velez\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Discount regularization, using a shorter planning horizon when calculating the optimal policy, is a popular choice to avoid overfitting when faced with sparse or noisy data. It is commonly interpreted as de-emphasizing or ignoring delayed effects. In this paper, we prove two alternative views of discount regularization that expose unintended consequences and motivate novel regularization methods. In model-based RL, planning under a lower discount factor acts like a prior with stronger regularization on state-action pairs with more transition data. This leads to poor performance when the transition matrix is estimated from data sets with uneven amounts of data across state-action pairs. In model-free RL, discount regularization equates to planning using a weighted average Bellman update, where the agent plans as if the values of all state-action pairs are closer than implied by the data. Our equivalence theorems motivate simple methods that generalize discount regularization by setting parameters locally for individual state-action pairs rather than globally. We demonstrate the failures of discount regularization and how we remedy them using our state-action-specific methods across empirical examples with both tabular and continuous state spaces.</p>\",\"PeriodicalId\":50161,\"journal\":{\"name\":\"Journal of Machine Learning Research\",\"volume\":\"25 \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058221/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Learning Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Rethinking Discount Regularization: New Interpretations, Unintended Consequences, and Solutions for Regularization in Reinforcement Learning.
Discount regularization, using a shorter planning horizon when calculating the optimal policy, is a popular choice to avoid overfitting when faced with sparse or noisy data. It is commonly interpreted as de-emphasizing or ignoring delayed effects. In this paper, we prove two alternative views of discount regularization that expose unintended consequences and motivate novel regularization methods. In model-based RL, planning under a lower discount factor acts like a prior with stronger regularization on state-action pairs with more transition data. This leads to poor performance when the transition matrix is estimated from data sets with uneven amounts of data across state-action pairs. In model-free RL, discount regularization equates to planning using a weighted average Bellman update, where the agent plans as if the values of all state-action pairs are closer than implied by the data. Our equivalence theorems motivate simple methods that generalize discount regularization by setting parameters locally for individual state-action pairs rather than globally. We demonstrate the failures of discount regularization and how we remedy them using our state-action-specific methods across empirical examples with both tabular and continuous state spaces.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.